Dergi makalesi Açık Erişim
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/274157</identifier>
<creators>
<creator>
<creatorName>Gülmez, Burak</creatorName>
<givenName>Burak</givenName>
<familyName>Gülmez</familyName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-6870-6558</nameIdentifier>
<affiliation>Mudanya University</affiliation>
</creator>
</creators>
<titles>
<title>Stock Price Prediction Using The Sand Cat Swarm Optimization And An Improved Deep Long Short Term Memory Network</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2024</publicationYear>
<dates>
<date dateType="Issued">2024-12-19</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/274157</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.bir.2024.12.002</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="https://creativecommons.org/licenses/by-nd/4.0/">Creative Commons Attribution-NoDerivatives</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>Stock price prediction remains a complex challenge in financial markets. This study introduces a novel Long Short-Term Memory (LSTM) model optimized by Sand Cat Swarm Optimization (SCSO) for stock price prediction. The research evaluates multiple algorithms including ANN, LSTM variants, Auto-ARIMA, Gradient Boosted Trees, DeepAR, N-BEATS, N-HITS, and the proposed LSTM-SCSO using DAX index data from 2018 to 2023. Model performance was assessed through Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error, and out-of-sample R2 metrics. Statistical significance was validated using Model Confidence Set analysis with 5000 bootstrap replications. Results demonstrate LSTM-SCSO&#39;s superior performance across all evaluation metrics. The model achieved an annualized return of 66.25% compared to the DAX index&#39;s 47.45%, with a Sharpe ratio of 2.9091. The integration of technical indicators and macroeconomic variables enhanced the model&#39;s predictive capabilities. These findings establish LSTM-SCSO as an effective tool for stock price prediction, offering practical value for investment decision-making.</p></description>
</descriptions>
</resource>
| Görüntülenme | 804 |
| İndirme | 42 |
| Veri hacmi | 38.8 MB |
| Tekil görüntülenme | 547 |
| Tekil indirme | 40 |