Dergi makalesi Açık Erişim
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/274157</identifier> <creators> <creator> <creatorName>Gülmez, Burak</creatorName> <givenName>Burak</givenName> <familyName>Gülmez</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-6870-6558</nameIdentifier> <affiliation>Mudanya University</affiliation> </creator> </creators> <titles> <title>Stock Price Prediction Using The Sand Cat Swarm Optimization And An Improved Deep Long Short Term Memory Network</title> </titles> <publisher>Aperta</publisher> <publicationYear>2024</publicationYear> <dates> <date dateType="Issued">2024-12-19</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/274157</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.bir.2024.12.002</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by-nd/4.0/">Creative Commons Attribution-NoDerivatives</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Stock price prediction remains a complex challenge in financial markets. This study introduces a novel Long Short-Term Memory (LSTM) model optimized by Sand Cat Swarm Optimization (SCSO) for stock price prediction. The research evaluates multiple algorithms including ANN, LSTM variants, Auto-ARIMA, Gradient Boosted Trees, DeepAR, N-BEATS, N-HITS, and the proposed LSTM-SCSO using DAX index data from 2018 to 2023. Model performance was assessed through Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error, and out-of-sample R2 metrics. Statistical significance was validated using Model Confidence Set analysis with 5000 bootstrap replications. Results demonstrate LSTM-SCSO&#39;s superior performance across all evaluation metrics. The model achieved an annualized return of 66.25% compared to the DAX index&#39;s 47.45%, with a Sharpe ratio of 2.9091. The integration of technical indicators and macroeconomic variables enhanced the model&#39;s predictive capabilities. These findings establish LSTM-SCSO as an effective tool for stock price prediction, offering practical value for investment decision-making.</p></description> </descriptions> </resource>
Görüntülenme | 787 |
İndirme | 24 |
Veri hacmi | 22.2 MB |
Tekil görüntülenme | 530 |
Tekil indirme | 23 |