Dergi makalesi Açık Erişim
{
"conceptrecid": "274156",
"created": "2024-12-30T13:30:21.848588+00:00",
"doi": "10.1016/j.bir.2024.12.002",
"files": [
{
"bucket": "6ebf3684-2911-4bcc-a371-5c6c98caacbd",
"checksum": "md5:55ddbc947a4ccd0e9499d3f575d032cf",
"key": "1-s2.0-S221484502400156X-main.pdf",
"links": {
"self": "https://aperta.ulakbim.gov.tr/api/files/6ebf3684-2911-4bcc-a371-5c6c98caacbd/1-s2.0-S221484502400156X-main.pdf"
},
"size": 924805,
"type": "pdf"
}
],
"id": 274157,
"links": {
"badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1016/j.bir.2024.12.002.svg",
"bucket": "https://aperta.ulakbim.gov.tr/api/files/6ebf3684-2911-4bcc-a371-5c6c98caacbd",
"doi": "https://doi.org/10.1016/j.bir.2024.12.002",
"html": "https://aperta.ulakbim.gov.tr/record/274157",
"latest": "https://aperta.ulakbim.gov.tr/api/records/274157",
"latest_html": "https://aperta.ulakbim.gov.tr/record/274157"
},
"metadata": {
"access_right": "open",
"access_right_category": "success",
"creators": [
{
"affiliation": "Mudanya University",
"name": "G\u00fclmez, Burak",
"orcid": "0000-0002-6870-6558"
}
],
"description": "<p>Stock price prediction remains a complex challenge in financial markets. This study introduces a novel Long Short-Term Memory (LSTM) model optimized by Sand Cat Swarm Optimization (SCSO) for stock price prediction. The research evaluates multiple algorithms including ANN, LSTM variants, Auto-ARIMA, Gradient Boosted Trees, DeepAR, N-BEATS, N-HITS, and the proposed LSTM-SCSO using DAX index data from 2018 to 2023. Model performance was assessed through Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error, and out-of-sample R2 metrics. Statistical significance was validated using Model Confidence Set analysis with 5000 bootstrap replications. Results demonstrate LSTM-SCSO's superior performance across all evaluation metrics. The model achieved an annualized return of 66.25% compared to the DAX index's 47.45%, with a Sharpe ratio of 2.9091. The integration of technical indicators and macroeconomic variables enhanced the model's predictive capabilities. These findings establish LSTM-SCSO as an effective tool for stock price prediction, offering practical value for investment decision-making.</p>",
"doi": "10.1016/j.bir.2024.12.002",
"has_grant": false,
"journal": {
"title": "Borsa Istanbul Review"
},
"license": {
"id": "cc-by-nd-4.0"
},
"publication_date": "2024-12-19",
"relations": {
"version": [
{
"count": 1,
"index": 0,
"is_last": true,
"last_child": {
"pid_type": "recid",
"pid_value": "274157"
},
"parent": {
"pid_type": "recid",
"pid_value": "274156"
}
}
]
},
"resource_type": {
"subtype": "article",
"title": "Dergi makalesi",
"type": "publication"
},
"science_branches": [
"Teknik Bilimler > End\u00fcstri M\u00fchendisli\u011fi"
],
"title": "Stock price prediction using the Sand Cat Swarm Optimization and an improved deep Long Short Term Memory network"
},
"owners": [
1013
],
"revision": 1,
"stats": {
"downloads": 42.0,
"unique_downloads": 40.0,
"unique_views": 547.0,
"version_downloads": 42.0,
"version_unique_downloads": 40.0,
"version_unique_views": 547.0,
"version_views": 804.0,
"version_volume": 38841810.0,
"views": 804.0,
"volume": 38841810.0
},
"updated": "2024-12-30T13:30:21.889765+00:00"
}
| Görüntülenme | 804 |
| İndirme | 42 |
| Veri hacmi | 38.8 MB |
| Tekil görüntülenme | 547 |
| Tekil indirme | 40 |