Dergi makalesi Açık Erişim
{ "conceptrecid": "274156", "created": "2024-12-30T13:30:21.848588+00:00", "doi": "10.1016/j.bir.2024.12.002", "files": [ { "bucket": "6ebf3684-2911-4bcc-a371-5c6c98caacbd", "checksum": "md5:55ddbc947a4ccd0e9499d3f575d032cf", "key": "1-s2.0-S221484502400156X-main.pdf", "links": { "self": "https://aperta.ulakbim.gov.tr/api/files/6ebf3684-2911-4bcc-a371-5c6c98caacbd/1-s2.0-S221484502400156X-main.pdf" }, "size": 924805, "type": "pdf" } ], "id": 274157, "links": { "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1016/j.bir.2024.12.002.svg", "bucket": "https://aperta.ulakbim.gov.tr/api/files/6ebf3684-2911-4bcc-a371-5c6c98caacbd", "doi": "https://doi.org/10.1016/j.bir.2024.12.002", "html": "https://aperta.ulakbim.gov.tr/record/274157", "latest": "https://aperta.ulakbim.gov.tr/api/records/274157", "latest_html": "https://aperta.ulakbim.gov.tr/record/274157" }, "metadata": { "access_right": "open", "access_right_category": "success", "creators": [ { "affiliation": "Mudanya University", "name": "G\u00fclmez, Burak", "orcid": "0000-0002-6870-6558" } ], "description": "<p>Stock price prediction remains a complex challenge in financial markets. This study introduces a novel Long Short-Term Memory (LSTM) model optimized by Sand Cat Swarm Optimization (SCSO) for stock price prediction. The research evaluates multiple algorithms including ANN, LSTM variants, Auto-ARIMA, Gradient Boosted Trees, DeepAR, N-BEATS, N-HITS, and the proposed LSTM-SCSO using DAX index data from 2018 to 2023. Model performance was assessed through Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error, and out-of-sample R2 metrics. Statistical significance was validated using Model Confidence Set analysis with 5000 bootstrap replications. Results demonstrate LSTM-SCSO's superior performance across all evaluation metrics. The model achieved an annualized return of 66.25% compared to the DAX index's 47.45%, with a Sharpe ratio of 2.9091. The integration of technical indicators and macroeconomic variables enhanced the model's predictive capabilities. These findings establish LSTM-SCSO as an effective tool for stock price prediction, offering practical value for investment decision-making.</p>", "doi": "10.1016/j.bir.2024.12.002", "has_grant": false, "journal": { "title": "Borsa Istanbul Review" }, "license": { "id": "cc-by-nd-4.0" }, "publication_date": "2024-12-19", "relations": { "version": [ { "count": 1, "index": 0, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "274157" }, "parent": { "pid_type": "recid", "pid_value": "274156" } } ] }, "resource_type": { "subtype": "article", "title": "Dergi makalesi", "type": "publication" }, "science_branches": [ "Teknik Bilimler > End\u00fcstri M\u00fchendisli\u011fi" ], "title": "Stock price prediction using the Sand Cat Swarm Optimization and an improved deep Long Short Term Memory network" }, "owners": [ 1013 ], "revision": 1, "stats": { "downloads": 24.0, "unique_downloads": 23.0, "unique_views": 527.0, "version_downloads": 24.0, "version_unique_downloads": 23.0, "version_unique_views": 527.0, "version_views": 784.0, "version_volume": 22195320.0, "views": 784.0, "volume": 22195320.0 }, "updated": "2024-12-30T13:30:21.889765+00:00" }
Görüntülenme | 784 |
İndirme | 24 |
Veri hacmi | 22.2 MB |
Tekil görüntülenme | 527 |
Tekil indirme | 23 |