Dergi makalesi Açık Erişim

Stock price prediction using the Sand Cat Swarm Optimization and an improved deep Long Short Term Memory network

Gülmez, Burak


JSON

{
  "conceptrecid": "274156", 
  "created": "2024-12-30T13:30:21.848588+00:00", 
  "doi": "10.1016/j.bir.2024.12.002", 
  "files": [
    {
      "bucket": "6ebf3684-2911-4bcc-a371-5c6c98caacbd", 
      "checksum": "md5:55ddbc947a4ccd0e9499d3f575d032cf", 
      "key": "1-s2.0-S221484502400156X-main.pdf", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/6ebf3684-2911-4bcc-a371-5c6c98caacbd/1-s2.0-S221484502400156X-main.pdf"
      }, 
      "size": 924805, 
      "type": "pdf"
    }
  ], 
  "id": 274157, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1016/j.bir.2024.12.002.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/6ebf3684-2911-4bcc-a371-5c6c98caacbd", 
    "doi": "https://doi.org/10.1016/j.bir.2024.12.002", 
    "html": "https://aperta.ulakbim.gov.tr/record/274157", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/274157", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/274157"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "creators": [
      {
        "affiliation": "Mudanya University", 
        "name": "G\u00fclmez, Burak", 
        "orcid": "0000-0002-6870-6558"
      }
    ], 
    "description": "<p>Stock price prediction remains a complex challenge in financial markets. This study introduces a novel Long Short-Term Memory (LSTM) model optimized by Sand Cat Swarm Optimization (SCSO) for stock price prediction. The research evaluates multiple algorithms including ANN, LSTM variants, Auto-ARIMA, Gradient Boosted Trees, DeepAR, N-BEATS, N-HITS, and the proposed LSTM-SCSO using DAX index data from 2018 to 2023. Model performance was assessed through Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error, and out-of-sample R2 metrics. Statistical significance was validated using Model Confidence Set analysis with 5000 bootstrap replications. Results demonstrate LSTM-SCSO&#39;s superior performance across all evaluation metrics. The model achieved an annualized return of 66.25% compared to the DAX index&#39;s 47.45%, with a Sharpe ratio of 2.9091. The integration of technical indicators and macroeconomic variables enhanced the model&#39;s predictive capabilities. These findings establish LSTM-SCSO as an effective tool for stock price prediction, offering practical value for investment decision-making.</p>", 
    "doi": "10.1016/j.bir.2024.12.002", 
    "has_grant": false, 
    "journal": {
      "title": "Borsa Istanbul Review"
    }, 
    "license": {
      "id": "cc-by-nd-4.0"
    }, 
    "publication_date": "2024-12-19", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "274157"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "274156"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "article", 
      "title": "Dergi makalesi", 
      "type": "publication"
    }, 
    "science_branches": [
      "Teknik Bilimler > End\u00fcstri M\u00fchendisli\u011fi"
    ], 
    "title": "Stock price prediction using the Sand Cat Swarm Optimization and an improved deep Long Short Term Memory network"
  }, 
  "owners": [
    1013
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 24.0, 
    "unique_downloads": 23.0, 
    "unique_views": 527.0, 
    "version_downloads": 24.0, 
    "version_unique_downloads": 23.0, 
    "version_unique_views": 527.0, 
    "version_views": 784.0, 
    "version_volume": 22195320.0, 
    "views": 784.0, 
    "volume": 22195320.0
  }, 
  "updated": "2024-12-30T13:30:21.889765+00:00"
}
784
24
görüntülenme
indirilme
Görüntülenme 784
İndirme 24
Veri hacmi 22.2 MB
Tekil görüntülenme 527
Tekil indirme 23

Alıntı yap