Konferans bildirisi Açık Erişim

Biotechnological Importance of Schizochytrium sp.

Aldeiri, Walaa; Çelekli, Abuzer


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20240902133523.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:273861</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Gaziantep University</subfield>
    <subfield code="a">Aldeiri, Walaa</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Schizochytrium sp. is an alga gaining increasing attention in the biotechnology field due to its diverse applications. This article aims to explore the biotechnological importance of Schizochytrium sp. and its potential contributions to various industries. Through its ability to produce valuable compounds such as omega-3 fatty acids, carotenoids, and polysaccharides. Schizochytrium sp. offers promising prospects in sectors ranging from pharmaceuticals to food and feed additives. Additionally, its robustness, ease of cultivation, and ability to thrive in diverse environmental conditions make it a promising candidate for sustainable bioprocessing. This article highlights the current research trends and future prospects associated with the biotechnological utilization of Schizochytrium sp.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[1] R. Nakai, T. Naganuma, Diversity and ecology of thraustochytrid protists in the marine environment, Marine Protists:  Diversity and Dynamics. (2015) 331–346. https://doi.org/10.1007/978-4-431-55130-0_13.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[2] X.-M. Sun, L.-J. Ren, Q.-Y. Zhao, X.-J. Ji, H. Huang, Enhancement of lipid accumulation in microalgae by metabolic  engineering, Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 1864 (2019) 552–566.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[3] A. Çelekli, Ö.E. Zariç, From Emissions to Environmental Impact: Understanding the Carbon Footprint, International  Journal of Environment and Geoinformatics. 10 (2023) 146–156. https://doi.org/10.30897/ijegeo.1383311.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[4] A. Çelekli, Ö. Zariç, Utilization of Herbaria in Ecological Studies: Biodiversity and Landscape Monitoring, Herbarium  Turcicum. 0 (2023) 0–0. https://doi.org/10.26650/ht.2023.1345916.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[5] Ö.E. Zariç, A. Çelekli, Artificial Wetlands in the Fight Against Global Warming: Reducing Carbon Footprint and  Enhancing Biodiversity, (2024).</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[6] A. Çelekli, Ö.E. Zariç, Rising Tide of Ocean Acidification, Environmental Research and Technology. (2024).  https://doi.org/10.35208/ert.1407588.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[7] Ö.E. Zariç, A. Çelekli, S. Yaygır, Lakes of Turkey: Comprehensive Review of Lake Çıldır, Aquatic Sciences and  Engineering. 39 (2024) 54–63. https://doi.org/10.26650/ase20241353730.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[8] A. Çelekli, Y. Sidar, Ö.E. Zariç, Lakes of Turkey: Comprehensive Review of Lake Abant, Acta Aquatica Turcica. 19  (2023) 368–380. https://doi.org/10.22392/actaquatr.1272430.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[9] L.F. Marchan, K.J.L. Chang, P.D. Nichols, W.J. Mitchell, J.L. Polglase, T. Gutierrez, Taxonomy, ecology and  biotechnological applications of thraustochytrids: A review, Biotechnology Advances. 36 (2018) 26–46.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[10] P. Mehta, R. Rani, R. Gupta, A. Mathur, S.S.V. Ramakumar, Simultaneous production of high-value lipids in  Schizochytrium sp. by synergism of chemical modulators, Applied Microbiology and Biotechnology. 107 (2023) 6135– 6149.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[11] J.X. Kang, Omega-3: a link between global climate change and human health, Biotechnology Advances. 29 (2011) 388– 390.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[12] A. Patel, D. Karageorgou, P. Katapodis, A. Sharma, U. Rova, P. Christakopoulos, L. Matsakas, Bioprospecting of  thraustochytrids for omega-3 fatty acids: A sustainable approach to reduce dependency on animal sources, Trends in  Food Science &amp; Technology. 115 (2021) 433–444.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[13] F. Du, Y.Z. Wang, Y.S. Xu, T.Q. Shi, W.Z. Liu, X.M. Sun, H. Huang, Biotechnological production of lipid and terpenoid  from thraustochytrids, Biotechnology Advances. 48 (2021) 107725. https://doi.org/10.1016/j.biotechadv.2021.107725.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[14] B.S.O. Colonia, G.V. de Melo Pereira, C.R. Soccol, Omega-3 microbial oils from marine thraustochytrids as a  sustainable and technological solution: a review and patent landscape, Trends in Food Science &amp; Technology. 99 (2020)  244–256.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[15] F.W. Yin, Y.T. Zhang, J.Y. Jiang, D.S. Guo, S. Gao, Z. Gao, Efficient docosahexaenoic acid production by  Schizochytrium sp. via a two-phase pH control strategy using ammonia and citric acid as pH regulators, Process  Biochemistry. 77 (2019) 1–7. https://doi.org/10.1016/j.procbio.2018.11.013.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[16] K.B. Hadley, J. Bauer, N.W. Milgram, The oil-rich alga Schizochytrium sp. as a dietary source of docosahexaenoic acid  improves shape discrimination learning associated with visual processing in a canine model of senescence,  Prostaglandins, Leukotrienes and Essential Fatty Acids. 118 (2017) 10–18</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[17] W.J. Lukiw, N.G. Bazan, Docosahexaenoic acid and the aging brain, The Journal of Nutrition. 138 (2008) 2510–2514.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[18] A. Çelekli, Ö.E. Zariç, Breathing life into Mars: Terraforming and the pivotal role of algae in atmospheric genesis, Life  Sciences in Space Research. 41 (2024) 181–190. https://doi.org/10.1016/j.lssr.2024.03.001.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[19] Ö.E. Zariç, A. Çelekli, Biotechnological Potential of Algae in Sustainable Development, in: 3rd International Conference  on Engineering, Natural and Social Sciences, 3rd International Conference on Engineering, Natural and Social Sciences,  2024.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[20] A. Çelekli, Ö.E. Zariç, Assessing the environmental impact of functional foods, in: 6th International Eurasian Conference  on Biological and Chemical Sciences, 2023: p. 103.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[21] A. Çelekli, İ. Yeşildağ, Ö.E. Zariç, Green building future: algal application technology, Journal of Sustainable  Construction Materials and Technologies. 9 (2024) 199–210. https://doi.org/10.47481/jscmt.1348260.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[22] R.R. Ambati, S.-M. Phang, S. Ravi, R.G. Aswathanarayana, Astaxanthin: Sources, extraction, stability, biological  activities and its commercial applications—A review, Marine Drugs. 12 (2014) 128–152.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[23] E. Ryckebosch, C. Bruneel, K. Muylaert, I. Foubert, Microalgae as an alternative source of omega‐3 long chain  polyunsaturated fatty acids, Lipid Technology. 24 (2012) 128–130.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[24] I. Jaswir, D. Noviendri, R.F. Hasrini, F. Octavianti, Carotenoids: Sources, medicinal properties and their application in  food and nutraceutical industry, Journal of Medicinal Plant Research. 5 (2011) 7119–7131.  https://doi.org/10.5897/JMPRx11.011.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[25] S.W. Cui, Q. Wang, Cell wall polysaccharides in cereals: Chemical structures and functional properties, Structural  Chemistry. 20 (2009) 291–297. https://doi.org/10.1007/s11224-009-9441-0.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[26] I. Benalaya, G. Alves, J. Lopes, L.R. Silva, A Review of Natural Polysaccharides: Sources, Characteristics, Properties,  Food, and Pharmaceutical Applications, International Journal of Molecular Sciences. 25 (2024) 1322.  https://doi.org/10.3390/ijms25021322.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[27] J.W. Roy Chong, X. Tan, K.S. Khoo, H.S. Ng, W. Jonglertjunya, G.Y. Yew, P.L. Show, Microalgae-based bioplastics:  Future solution towards mitigation of plastic wastes, Environmental Research. 206 (2022) 112620.  https://doi.org/10.1016/j.envres.2021.112620.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[28] Y.K. Leong, F.C. Yang, J.S. Chang, Extraction of polysaccharides from edible mushrooms: Emerging technologies and  recent advances, Carbohydrate Polymers. 251 (2021) 117006. https://doi.org/10.1016/j.carbpol.2020.117006.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[29] G. Chi, Y. Xu, X. Cao, Z. Li, M. Cao, Y. Chisti, N. He, Production of polyunsaturated fatty acids by Schizochytrium  615 (Aurantiochytrium) spp., Biotechnology Advances. 55 (2022) 107897.  https://doi.org/10.1016/j.biotechadv.2021.107897.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[30] A. Çelekli, Ö.E. Zariç, Plasma-Enhanced Microalgal Cultivation: A Sustainable Approach for Biofuel and Biomass  Production, in: Emerging Applications of Plasma Science in Allied Technologies, IGI Global, 2024: p. 300.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[31] J.B. Moreira, B. da S. Vaz, B.B. Cardias, C.G. Cruz, A.C.A. de Almeida, J.A.V. Costa, M.G. de Morais, Microalgae  Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture, Polysaccharides. 3 (2022)  441–457. https://doi.org/10.3390/polysaccharides3020027.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[32] C. Kinnaert, M. Daugaard, F. Nami, M.H. Clausen, Chemical Synthesis of Oligosaccharides Related to the Cell Walls  of Plants and Algae, Chemical Reviews. 117 (2017) 11337–11405. https://doi.org/10.1021/acs.chemrev.7b00162.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[33] M. Izydorczyk, S.W. Cui, Q. Wang, Polysaccharide gums: structures, functional properties, and applications, Food  Carbohydrates: Chemistry, Physical Properties, and Applications. 293 (2005) 299.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[34] X. Yang, A. Li, X. Li, L. Sun, Y. Guo, An overview of classifications, properties of food polysaccharides and their links  to applications in improving food textures, Trends in Food Science and Technology. 102 (2020) 1–15.  https://doi.org/10.1016/j.tifs.2020.05.020.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[35] H.T. Hoang, J.Y. Moon, Y.C. Lee, Natural antioxidants from plant extracts in skincare cosmetics: Recent applications,  challenges and perspectives, Cosmetics. 8 (2021) 106. https://doi.org/10.3390/cosmetics8040106.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[36] B.A. Martins, P.B.S. de Albuquerque, M.P. de Souza, Bio-based Films and Coatings: Sustainable Polysaccharide  Packaging Alternatives for the Food Industry, Journal of Polymers and the Environment. 30 (2022) 4023–4039.  https://doi.org/10.1007/s10924-022-02442-0.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[37] M. Gericke, A.J.R. Amaral, T. Budtova, P. De Wever, T. Groth, T. Heinze, H. Höfte, A. Huber, O. Ikkala, J. Kapuśniak,  R. Kargl, J.F. Mano, M. Másson, P. Matricardi, B. Medronho, M. Norgren, T. Nypelö, L. Nyström, A. Roig, M. Sauer,  H.A. Schols, J. van der Linden, T.M. Wrodnigg, C. Xu, G.E. Yakubov, K. Stana Kleinschek, P. Fardim, The European  Polysaccharide Network of Excellence (EPNOE) research roadmap 2040: Advanced strategies for exploiting the vast  potential of polysaccharides as renewable bioresources, Carbohydrate Polymers. 326 (2024) 121633.  https://doi.org/10.1016/j.carbpol.2023.121633.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[38] S. Bellou, M.N. Baeshen, A.M. Elazzazy, D. Aggeli, F. Sayegh, G. Aggelis, Microalgal lipids biochemistry and  biotechnological perspectives, Biotechnology Advances. 32 (2014) 1476–1493.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[39] C. Morabito, C. Bournaud, C. Maës, M. Schuler, R. Aiese Cigliano, Y. Dellero, E. Maréchal, A. Amato, F. Rébeillé, The  lipid metabolism in thraustochytrids, Progress in Lipid Research. 76 (2019) 101007.  https://doi.org/10.1016/j.plipres.2019.101007.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[40] Y. Song, X. Yang, S. Li, Y. Luo, J.S. Chang, Z. Hu, Thraustochytrids as a promising source of fatty acids, carotenoids,  and sterols: bioactive compound biosynthesis, and modern biotechnology, Critical Reviews in Biotechnology. 44 (2024)  618–640. https://doi.org/10.1080/07388551.2023.2196373.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">[41] N. Kujawska, S. Talbierz, M. Dębowski, J. Kazimierowicz, M. Zieliński, Cultivation method effect on schizochytrium  sp. Biomass growth and docosahexaenoic acid (dha) production with the use of waste glycerol as a source of organic  carbon, Energies. 14 (2021) 2952. https://doi.org/10.3390/en14102952.</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="a">10.48623/aperta.273860</subfield>
    <subfield code="i">isVersionOf</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc/4.0/</subfield>
    <subfield code="a">Creative Commons Attribution-NonCommercial</subfield>
  </datafield>
  <controlfield tag="001">273861</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="g">ICEANS</subfield>
    <subfield code="a">5 th International Conference on Engineering and Applied  Natural Sciences</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Biotechnological Importance of Schizochytrium sp.</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2024-09-02</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Gaziantep University</subfield>
    <subfield code="a">Çelekli, Abuzer</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/273861/files/walaa.pdf</subfield>
    <subfield code="s">770551</subfield>
    <subfield code="z">md5:8f0857033df38d35cf3a6ad4b288d0a8</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.48623/aperta.273861</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
208
148
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 208200
İndirme 148148
Veri hacmi 114.0 MB114.0 MB
Tekil görüntülenme 171165
Tekil indirme 118118

Alıntı yap