Konferans bildirisi Açık Erişim

Biotechnological Importance of Schizochytrium sp.

   Aldeiri, Walaa; Çelekli, Abuzer

Schizochytrium sp. is an alga gaining increasing attention in the biotechnology field due to its diverse applications. This article aims to explore the biotechnological importance of Schizochytrium sp. and its potential contributions to various industries. Through its ability to produce valuable compounds such as omega-3 fatty acids, carotenoids, and polysaccharides. Schizochytrium sp. offers promising prospects in sectors ranging from pharmaceuticals to food and feed additives. Additionally, its robustness, ease of cultivation, and ability to thrive in diverse environmental conditions make it a promising candidate for sustainable bioprocessing. This article highlights the current research trends and future prospects associated with the biotechnological utilization of Schizochytrium sp.

Dosyalar (770.6 kB)
Dosya adı Boyutu
walaa.pdf
md5:8f0857033df38d35cf3a6ad4b288d0a8
770.6 kB İndir
  • [10] P. Mehta, R. Rani, R. Gupta, A. Mathur, S.S.V. Ramakumar, Simultaneous production of high-value lipids in Schizochytrium sp. by synergism of chemical modulators, Applied Microbiology and Biotechnology. 107 (2023) 6135– 6149.
  • [11] J.X. Kang, Omega-3: a link between global climate change and human health, Biotechnology Advances. 29 (2011) 388– 390.
  • [12] A. Patel, D. Karageorgou, P. Katapodis, A. Sharma, U. Rova, P. Christakopoulos, L. Matsakas, Bioprospecting of thraustochytrids for omega-3 fatty acids: A sustainable approach to reduce dependency on animal sources, Trends in Food Science & Technology. 115 (2021) 433–444.
  • [13] F. Du, Y.Z. Wang, Y.S. Xu, T.Q. Shi, W.Z. Liu, X.M. Sun, H. Huang, Biotechnological production of lipid and terpenoid from thraustochytrids, Biotechnology Advances. 48 (2021) 107725. https://doi.org/10.1016/j.biotechadv.2021.107725.
  • [14] B.S.O. Colonia, G.V. de Melo Pereira, C.R. Soccol, Omega-3 microbial oils from marine thraustochytrids as a sustainable and technological solution: a review and patent landscape, Trends in Food Science & Technology. 99 (2020) 244–256.
  • [15] F.W. Yin, Y.T. Zhang, J.Y. Jiang, D.S. Guo, S. Gao, Z. Gao, Efficient docosahexaenoic acid production by Schizochytrium sp. via a two-phase pH control strategy using ammonia and citric acid as pH regulators, Process Biochemistry. 77 (2019) 1–7. https://doi.org/10.1016/j.procbio.2018.11.013.
  • [16] K.B. Hadley, J. Bauer, N.W. Milgram, The oil-rich alga Schizochytrium sp. as a dietary source of docosahexaenoic acid improves shape discrimination learning associated with visual processing in a canine model of senescence, Prostaglandins, Leukotrienes and Essential Fatty Acids. 118 (2017) 10–18
  • [17] W.J. Lukiw, N.G. Bazan, Docosahexaenoic acid and the aging brain, The Journal of Nutrition. 138 (2008) 2510–2514.
  • [18] A. Çelekli, Ö.E. Zariç, Breathing life into Mars: Terraforming and the pivotal role of algae in atmospheric genesis, Life Sciences in Space Research. 41 (2024) 181–190. https://doi.org/10.1016/j.lssr.2024.03.001.
  • [19] Ö.E. Zariç, A. Çelekli, Biotechnological Potential of Algae in Sustainable Development, in: 3rd International Conference on Engineering, Natural and Social Sciences, 3rd International Conference on Engineering, Natural and Social Sciences, 2024.
  • [1] R. Nakai, T. Naganuma, Diversity and ecology of thraustochytrid protists in the marine environment, Marine Protists: Diversity and Dynamics. (2015) 331–346. https://doi.org/10.1007/978-4-431-55130-0_13.
  • [20] A. Çelekli, Ö.E. Zariç, Assessing the environmental impact of functional foods, in: 6th International Eurasian Conference on Biological and Chemical Sciences, 2023: p. 103.
  • [21] A. Çelekli, İ. Yeşildağ, Ö.E. Zariç, Green building future: algal application technology, Journal of Sustainable Construction Materials and Technologies. 9 (2024) 199–210. https://doi.org/10.47481/jscmt.1348260.
  • [22] R.R. Ambati, S.-M. Phang, S. Ravi, R.G. Aswathanarayana, Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review, Marine Drugs. 12 (2014) 128–152.
  • [23] E. Ryckebosch, C. Bruneel, K. Muylaert, I. Foubert, Microalgae as an alternative source of omega‐3 long chain polyunsaturated fatty acids, Lipid Technology. 24 (2012) 128–130.
  • [24] I. Jaswir, D. Noviendri, R.F. Hasrini, F. Octavianti, Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry, Journal of Medicinal Plant Research. 5 (2011) 7119–7131. https://doi.org/10.5897/JMPRx11.011.
  • [25] S.W. Cui, Q. Wang, Cell wall polysaccharides in cereals: Chemical structures and functional properties, Structural Chemistry. 20 (2009) 291–297. https://doi.org/10.1007/s11224-009-9441-0.
  • [26] I. Benalaya, G. Alves, J. Lopes, L.R. Silva, A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications, International Journal of Molecular Sciences. 25 (2024) 1322. https://doi.org/10.3390/ijms25021322.
  • [27] J.W. Roy Chong, X. Tan, K.S. Khoo, H.S. Ng, W. Jonglertjunya, G.Y. Yew, P.L. Show, Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes, Environmental Research. 206 (2022) 112620. https://doi.org/10.1016/j.envres.2021.112620.
  • [28] Y.K. Leong, F.C. Yang, J.S. Chang, Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances, Carbohydrate Polymers. 251 (2021) 117006. https://doi.org/10.1016/j.carbpol.2020.117006.
  • [29] G. Chi, Y. Xu, X. Cao, Z. Li, M. Cao, Y. Chisti, N. He, Production of polyunsaturated fatty acids by Schizochytrium 615 (Aurantiochytrium) spp., Biotechnology Advances. 55 (2022) 107897. https://doi.org/10.1016/j.biotechadv.2021.107897.
  • [2] X.-M. Sun, L.-J. Ren, Q.-Y. Zhao, X.-J. Ji, H. Huang, Enhancement of lipid accumulation in microalgae by metabolic engineering, Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 1864 (2019) 552–566.
  • [30] A. Çelekli, Ö.E. Zariç, Plasma-Enhanced Microalgal Cultivation: A Sustainable Approach for Biofuel and Biomass Production, in: Emerging Applications of Plasma Science in Allied Technologies, IGI Global, 2024: p. 300.
  • [31] J.B. Moreira, B. da S. Vaz, B.B. Cardias, C.G. Cruz, A.C.A. de Almeida, J.A.V. Costa, M.G. de Morais, Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture, Polysaccharides. 3 (2022) 441–457. https://doi.org/10.3390/polysaccharides3020027.
  • [32] C. Kinnaert, M. Daugaard, F. Nami, M.H. Clausen, Chemical Synthesis of Oligosaccharides Related to the Cell Walls of Plants and Algae, Chemical Reviews. 117 (2017) 11337–11405. https://doi.org/10.1021/acs.chemrev.7b00162.
  • [33] M. Izydorczyk, S.W. Cui, Q. Wang, Polysaccharide gums: structures, functional properties, and applications, Food Carbohydrates: Chemistry, Physical Properties, and Applications. 293 (2005) 299.
  • [34] X. Yang, A. Li, X. Li, L. Sun, Y. Guo, An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures, Trends in Food Science and Technology. 102 (2020) 1–15. https://doi.org/10.1016/j.tifs.2020.05.020.
  • [35] H.T. Hoang, J.Y. Moon, Y.C. Lee, Natural antioxidants from plant extracts in skincare cosmetics: Recent applications, challenges and perspectives, Cosmetics. 8 (2021) 106. https://doi.org/10.3390/cosmetics8040106.
  • [36] B.A. Martins, P.B.S. de Albuquerque, M.P. de Souza, Bio-based Films and Coatings: Sustainable Polysaccharide Packaging Alternatives for the Food Industry, Journal of Polymers and the Environment. 30 (2022) 4023–4039. https://doi.org/10.1007/s10924-022-02442-0.
  • [37] M. Gericke, A.J.R. Amaral, T. Budtova, P. De Wever, T. Groth, T. Heinze, H. Höfte, A. Huber, O. Ikkala, J. Kapuśniak, R. Kargl, J.F. Mano, M. Másson, P. Matricardi, B. Medronho, M. Norgren, T. Nypelö, L. Nyström, A. Roig, M. Sauer, H.A. Schols, J. van der Linden, T.M. Wrodnigg, C. Xu, G.E. Yakubov, K. Stana Kleinschek, P. Fardim, The European Polysaccharide Network of Excellence (EPNOE) research roadmap 2040: Advanced strategies for exploiting the vast potential of polysaccharides as renewable bioresources, Carbohydrate Polymers. 326 (2024) 121633. https://doi.org/10.1016/j.carbpol.2023.121633.
  • [38] S. Bellou, M.N. Baeshen, A.M. Elazzazy, D. Aggeli, F. Sayegh, G. Aggelis, Microalgal lipids biochemistry and biotechnological perspectives, Biotechnology Advances. 32 (2014) 1476–1493.
  • [39] C. Morabito, C. Bournaud, C. Maës, M. Schuler, R. Aiese Cigliano, Y. Dellero, E. Maréchal, A. Amato, F. Rébeillé, The lipid metabolism in thraustochytrids, Progress in Lipid Research. 76 (2019) 101007. https://doi.org/10.1016/j.plipres.2019.101007.
  • [3] A. Çelekli, Ö.E. Zariç, From Emissions to Environmental Impact: Understanding the Carbon Footprint, International Journal of Environment and Geoinformatics. 10 (2023) 146–156. https://doi.org/10.30897/ijegeo.1383311.
  • [40] Y. Song, X. Yang, S. Li, Y. Luo, J.S. Chang, Z. Hu, Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology, Critical Reviews in Biotechnology. 44 (2024) 618–640. https://doi.org/10.1080/07388551.2023.2196373.
  • [41] N. Kujawska, S. Talbierz, M. Dębowski, J. Kazimierowicz, M. Zieliński, Cultivation method effect on schizochytrium sp. Biomass growth and docosahexaenoic acid (dha) production with the use of waste glycerol as a source of organic carbon, Energies. 14 (2021) 2952. https://doi.org/10.3390/en14102952.
  • [4] A. Çelekli, Ö. Zariç, Utilization of Herbaria in Ecological Studies: Biodiversity and Landscape Monitoring, Herbarium Turcicum. 0 (2023) 0–0. https://doi.org/10.26650/ht.2023.1345916.
  • [5] Ö.E. Zariç, A. Çelekli, Artificial Wetlands in the Fight Against Global Warming: Reducing Carbon Footprint and Enhancing Biodiversity, (2024).
  • [6] A. Çelekli, Ö.E. Zariç, Rising Tide of Ocean Acidification, Environmental Research and Technology. (2024). https://doi.org/10.35208/ert.1407588.
  • [7] Ö.E. Zariç, A. Çelekli, S. Yaygır, Lakes of Turkey: Comprehensive Review of Lake Çıldır, Aquatic Sciences and Engineering. 39 (2024) 54–63. https://doi.org/10.26650/ase20241353730.
  • [8] A. Çelekli, Y. Sidar, Ö.E. Zariç, Lakes of Turkey: Comprehensive Review of Lake Abant, Acta Aquatica Turcica. 19 (2023) 368–380. https://doi.org/10.22392/actaquatr.1272430.
  • [9] L.F. Marchan, K.J.L. Chang, P.D. Nichols, W.J. Mitchell, J.L. Polglase, T. Gutierrez, Taxonomy, ecology and biotechnological applications of thraustochytrids: A review, Biotechnology Advances. 36 (2018) 26–46.
208
148
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 208200
İndirme 148148
Veri hacmi 114.0 MB114.0 MB
Tekil görüntülenme 171165
Tekil indirme 118118

Alıntı yap