Dergi makalesi Açık Erişim
Koca, Mehmet Burak; Sevilgen, Fatih Erdoğan
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">single-cell</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">data integration</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">batch effect</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">variational autoencoder</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">cell matching</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="041" ind1=" " ind2=" ">
<subfield code="a">eng</subfield>
</datafield>
<controlfield tag="005">20240209065240.0</controlfield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:771ae7d5e242edee80a66b8f4ed279f5</subfield>
<subfield code="s">154807681</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/263586/files/SCPRO-HI.zip</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="o">oai:aperta.ulakbim.gov.tr:263586</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><p>The use of mass spectrometry and antibody-based sequencing technologies at the single-cell level has led to an increase in single-cell proteomic datasets. Integrating these datasets is crucial to eliminate the batch effect that often arises due to their limited sequencing molecules. Although methods for horizontally integrating high-dimensional single-cell transcriptomic datasets can also be applied to single-cell proteomic datasets, a specialized approach explicitly tailored for low-dimensional proteomic datasets may enhance the integration process. Here, we introduce SCPRO-HI, an algorithm for the horizontal integration of antibody-based single-cell proteomic datasets. It utilizes a hierarchical cell anchoring technique to match cells based on the similarity of distinctive proteins for constituting cell clusters. A novel variational auto-encoder model is employed for correcting batch effects on the protein abundances, eliminating the need for mapping them into a new domain. Moreover, we propose a technique for extending the algorithm to high-dimensional datasets. The performance of the SCPRO-HI algorithm is evaluated using simulated and real-world single-cell proteomic datasets. The findings demonstrate our algorithm outperforms state-of-the-art methods, achieving a 75% higher silhouette score while preserving HVPs 13% better. Furthermore, the algorithm shows competitive performance in transcriptomic datasets, suggesting potential for integrating high-dimensional mass-spectrometry-based proteomic datasets.</p></subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">article</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1002/pmic.202300282</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Integration of single-cell proteomic datasets through distinctive proteins in cell clusters</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution Share-Alike</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by-sa</subfield>
</datafield>
<controlfield tag="001">263586</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2023-12-22</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Sevilgen, Fatih Erdoğan</subfield>
<subfield code="u">Boğaziçi Üniversitesi</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Koca, Mehmet Burak</subfield>
<subfield code="u">Gebze Teknik Üniversitesi</subfield>
</datafield>
</record>
| Görüntülenme | 107 |
| İndirme | 7 |
| Veri hacmi | 1.1 GB |
| Tekil görüntülenme | 95 |
| Tekil indirme | 7 |