Dergi makalesi Açık Erişim

Integration of single-cell proteomic datasets through distinctive proteins in cell clusters

Koca, Mehmet Burak; Sevilgen, Fatih Erdoğan


JSON

{
  "conceptrecid": "263585", 
  "created": "2024-02-09T06:52:40.355414+00:00", 
  "doi": "10.1002/pmic.202300282", 
  "files": [
    {
      "bucket": "a9b11077-3b99-4f0e-9bc0-d1fd3610351f", 
      "checksum": "md5:771ae7d5e242edee80a66b8f4ed279f5", 
      "key": "SCPRO-HI.zip", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/a9b11077-3b99-4f0e-9bc0-d1fd3610351f/SCPRO-HI.zip"
      }, 
      "size": 154807681, 
      "type": "zip"
    }
  ], 
  "id": 263586, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1002/pmic.202300282.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/a9b11077-3b99-4f0e-9bc0-d1fd3610351f", 
    "doi": "https://doi.org/10.1002/pmic.202300282", 
    "html": "https://aperta.ulakbim.gov.tr/record/263586", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/263586", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/263586"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "creators": [
      {
        "affiliation": "Gebze Teknik \u00dcniversitesi", 
        "name": "Koca, Mehmet Burak"
      }, 
      {
        "affiliation": "Bo\u011fazi\u00e7i \u00dcniversitesi", 
        "name": "Sevilgen, Fatih Erdo\u011fan"
      }
    ], 
    "description": "<p>The use of mass spectrometry and antibody-based sequencing technologies at the single-cell level has led to an increase in single-cell proteomic datasets. Integrating these datasets is crucial to eliminate the batch effect that often arises due to their limited sequencing molecules. Although methods for horizontally integrating high-dimensional single-cell transcriptomic datasets can also be applied to single-cell proteomic datasets, a specialized approach explicitly tailored for low-dimensional proteomic datasets may enhance the integration process. Here, we introduce SCPRO-HI, an algorithm for the horizontal integration of antibody-based single-cell proteomic datasets. It utilizes a hierarchical cell anchoring technique to match cells based on the similarity of distinctive proteins for constituting cell clusters. A novel variational auto-encoder model is employed for correcting batch effects on the protein abundances, eliminating the need for mapping them into a new domain. Moreover, we propose a technique for extending the algorithm to high-dimensional datasets. The performance of the SCPRO-HI algorithm is evaluated using simulated and real-world single-cell proteomic datasets. The findings demonstrate our algorithm outperforms state-of-the-art methods, achieving a 75% higher silhouette score while preserving HVPs 13% better. Furthermore, the algorithm shows competitive performance in transcriptomic datasets, suggesting potential for integrating high-dimensional mass-spectrometry-based proteomic datasets.</p>", 
    "doi": "10.1002/pmic.202300282", 
    "has_grant": true, 
    "keywords": [
      "single-cell", 
      "data integration", 
      "batch effect", 
      "variational autoencoder", 
      "cell matching"
    ], 
    "language": "eng", 
    "license": {
      "id": "cc-by-sa"
    }, 
    "publication_date": "2023-12-22", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "263586"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "263585"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "article", 
      "title": "Dergi makalesi", 
      "type": "publication"
    }, 
    "science_branches": [
      "Temel Bilimler > Ya\u015fam Bilimleri > Biyoinformatik", 
      "Teknik Bilimler > Bilgisayar Bilimleri"
    ], 
    "title": "Integration of single-cell proteomic datasets through distinctive proteins in cell clusters", 
    "tubitak_grants": [
      {
        "program": "1002", 
        "project_number": "122E587", 
        "workgroup": "EEEAG"
      }
    ]
  }, 
  "owners": [
    1803
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 2.0, 
    "unique_downloads": 2.0, 
    "unique_views": 51.0, 
    "version_downloads": 2.0, 
    "version_unique_downloads": 2.0, 
    "version_unique_views": 51.0, 
    "version_views": 55.0, 
    "version_volume": 309615362.0, 
    "views": 55.0, 
    "volume": 309615362.0
  }, 
  "updated": "2024-02-09T06:52:40.399236+00:00"
}
55
2
görüntülenme
indirilme
Görüntülenme 55
İndirme 2
Veri hacmi 309.6 MB
Tekil görüntülenme 51
Tekil indirme 2

Alıntı yap