Dergi makalesi Açık Erişim
Koca, Mehmet Burak; Sevilgen, Fatih Erdoğan
{
"conceptrecid": "263585",
"created": "2024-02-09T06:52:40.355414+00:00",
"doi": "10.1002/pmic.202300282",
"files": [
{
"bucket": "a9b11077-3b99-4f0e-9bc0-d1fd3610351f",
"checksum": "md5:771ae7d5e242edee80a66b8f4ed279f5",
"key": "SCPRO-HI.zip",
"links": {
"self": "https://aperta.ulakbim.gov.tr/api/files/a9b11077-3b99-4f0e-9bc0-d1fd3610351f/SCPRO-HI.zip"
},
"size": 154807681,
"type": "zip"
}
],
"id": 263586,
"links": {
"badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1002/pmic.202300282.svg",
"bucket": "https://aperta.ulakbim.gov.tr/api/files/a9b11077-3b99-4f0e-9bc0-d1fd3610351f",
"doi": "https://doi.org/10.1002/pmic.202300282",
"html": "https://aperta.ulakbim.gov.tr/record/263586",
"latest": "https://aperta.ulakbim.gov.tr/api/records/263586",
"latest_html": "https://aperta.ulakbim.gov.tr/record/263586"
},
"metadata": {
"access_right": "open",
"access_right_category": "success",
"creators": [
{
"affiliation": "Gebze Teknik \u00dcniversitesi",
"name": "Koca, Mehmet Burak"
},
{
"affiliation": "Bo\u011fazi\u00e7i \u00dcniversitesi",
"name": "Sevilgen, Fatih Erdo\u011fan"
}
],
"description": "<p>The use of mass spectrometry and antibody-based sequencing technologies at the single-cell level has led to an increase in single-cell proteomic datasets. Integrating these datasets is crucial to eliminate the batch effect that often arises due to their limited sequencing molecules. Although methods for horizontally integrating high-dimensional single-cell transcriptomic datasets can also be applied to single-cell proteomic datasets, a specialized approach explicitly tailored for low-dimensional proteomic datasets may enhance the integration process. Here, we introduce SCPRO-HI, an algorithm for the horizontal integration of antibody-based single-cell proteomic datasets. It utilizes a hierarchical cell anchoring technique to match cells based on the similarity of distinctive proteins for constituting cell clusters. A novel variational auto-encoder model is employed for correcting batch effects on the protein abundances, eliminating the need for mapping them into a new domain. Moreover, we propose a technique for extending the algorithm to high-dimensional datasets. The performance of the SCPRO-HI algorithm is evaluated using simulated and real-world single-cell proteomic datasets. The findings demonstrate our algorithm outperforms state-of-the-art methods, achieving a 75% higher silhouette score while preserving HVPs 13% better. Furthermore, the algorithm shows competitive performance in transcriptomic datasets, suggesting potential for integrating high-dimensional mass-spectrometry-based proteomic datasets.</p>",
"doi": "10.1002/pmic.202300282",
"has_grant": true,
"keywords": [
"single-cell",
"data integration",
"batch effect",
"variational autoencoder",
"cell matching"
],
"language": "eng",
"license": {
"id": "cc-by-sa"
},
"publication_date": "2023-12-22",
"relations": {
"version": [
{
"count": 1,
"index": 0,
"is_last": true,
"last_child": {
"pid_type": "recid",
"pid_value": "263586"
},
"parent": {
"pid_type": "recid",
"pid_value": "263585"
}
}
]
},
"resource_type": {
"subtype": "article",
"title": "Dergi makalesi",
"type": "publication"
},
"science_branches": [
"Temel Bilimler > Ya\u015fam Bilimleri > Biyoinformatik",
"Teknik Bilimler > Bilgisayar Bilimleri"
],
"title": "Integration of single-cell proteomic datasets through distinctive proteins in cell clusters",
"tubitak_grants": [
{
"program": "1002",
"project_number": "122E587",
"workgroup": "EEEAG"
}
]
},
"owners": [
1803
],
"revision": 1,
"stats": {
"downloads": 7.0,
"unique_downloads": 7.0,
"unique_views": 95.0,
"version_downloads": 7.0,
"version_unique_downloads": 7.0,
"version_unique_views": 95.0,
"version_views": 107.0,
"version_volume": 1083653767.0,
"views": 107.0,
"volume": 1083653767.0
},
"updated": "2024-02-09T06:52:40.399236+00:00"
}
| Görüntülenme | 107 |
| İndirme | 7 |
| Veri hacmi | 1.1 GB |
| Tekil görüntülenme | 95 |
| Tekil indirme | 7 |