Dergi makalesi Açık Erişim
Koca, Mehmet Burak; Sevilgen, Fatih Erdoğan
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/263586</identifier>
<creators>
<creator>
<creatorName>Koca, Mehmet Burak</creatorName>
<givenName>Mehmet Burak</givenName>
<familyName>Koca</familyName>
<affiliation>Gebze Teknik Üniversitesi</affiliation>
</creator>
<creator>
<creatorName>Sevilgen, Fatih Erdoğan</creatorName>
<givenName>Fatih Erdoğan</givenName>
<familyName>Sevilgen</familyName>
<affiliation>Boğaziçi Üniversitesi</affiliation>
</creator>
</creators>
<titles>
<title>Integration Of Single-Cell Proteomic Datasets Through Distinctive Proteins In Cell Clusters</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2023</publicationYear>
<subjects>
<subject>single-cell</subject>
<subject>data integration</subject>
<subject>batch effect</subject>
<subject>variational autoencoder</subject>
<subject>cell matching</subject>
</subjects>
<dates>
<date dateType="Issued">2023-12-22</date>
</dates>
<language>en</language>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/263586</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1002/pmic.202300282</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by-sa">Creative Commons Attribution Share-Alike</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>The use of mass spectrometry and antibody-based sequencing technologies at the single-cell level has led to an increase in single-cell proteomic datasets. Integrating these datasets is crucial to eliminate the batch effect that often arises due to their limited sequencing molecules. Although methods for horizontally integrating high-dimensional single-cell transcriptomic datasets can also be applied to single-cell proteomic datasets, a specialized approach explicitly tailored for low-dimensional proteomic datasets may enhance the integration process. Here, we introduce SCPRO-HI, an algorithm for the horizontal integration of antibody-based single-cell proteomic datasets. It utilizes a hierarchical cell anchoring technique to match cells based on the similarity of distinctive proteins for constituting cell clusters. A novel variational auto-encoder model is employed for correcting batch effects on the protein abundances, eliminating the need for mapping them into a new domain. Moreover, we propose a technique for extending the algorithm to high-dimensional datasets. The performance of the SCPRO-HI algorithm is evaluated using simulated and real-world single-cell proteomic datasets. The findings demonstrate our algorithm outperforms state-of-the-art methods, achieving a 75% higher silhouette score while preserving HVPs 13% better. Furthermore, the algorithm shows competitive performance in transcriptomic datasets, suggesting potential for integrating high-dimensional mass-spectrometry-based proteomic datasets.</p></description>
</descriptions>
<fundingReferences>
<fundingReference>
<funderName>Türkiye Bilimsel ve Teknolojik Araştirma Kurumu</funderName>
<funderIdentifier funderIdentifierType="Crossref Funder ID">https://doi.org/10.13039/501100004410</funderIdentifier>
<awardNumber>122E587</awardNumber>
</fundingReference>
</fundingReferences>
</resource>
| Görüntülenme | 107 |
| İndirme | 7 |
| Veri hacmi | 1.1 GB |
| Tekil görüntülenme | 95 |
| Tekil indirme | 7 |