Dergi makalesi Açık Erişim

Two-Legged Robot Motion Control With Recurrent Neural Networks

Çatalbaş, Bahadır; Morgül, Ömer


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Two-Legged Robot Motion Control With Recurrent Neural Networks</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">Journal of Intelligent &amp; Robotic Systems</subfield>
    <subfield code="v">104</subfield>
    <subfield code="n">4</subfield>
    <subfield code="c">59</subfield>
  </datafield>
  <controlfield tag="001">263039</controlfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Legged locomotion is a desirable ability for robotic systems thanks to its agile mobility and wide range of motions that it provides. In this paper, the use of neural network-based nonlinear controller structures which consist of recurrent and feedforward layers have been examined in the dynamically stable walking problem of two-legged robots. In detail, hybrid neural controllers, in which long short-term memory type of neuron models employed at recurrent layers, are utilized in the feedback and feedforward paths. To train these neural networks, supervised learning data sets are created by using a biped robot platform which is controlled by a central pattern generator. Then, the ability of the neural networks to perform stable gait by controlling the robot platform is examined under various ground conditions in the simulation environment. After that, the stable walking generation capacity of the neural networks and the central pattern generators are compared with each other. It is shown that the inclusion of recurrent layer provides smooth transition and control between stance and flight motion phases and L&lt;sub&gt;2&lt;/sub&gt;&amp;nbsp;regularization is beneficial for walking performance. Finally, the proposed hybrid neural network models are found to be more successful gait controllers than the central pattern generator, which is employed to generate data sets used in training.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-3158-3961</subfield>
    <subfield code="u">İhsan Doğramacı Bilkent Üniversitesi</subfield>
    <subfield code="a">Morgül, Ömer</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">article</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-8684-5754</subfield>
    <subfield code="u">İhsan Doğramacı Bilkent Üniversitesi</subfield>
    <subfield code="a">Çatalbaş, Bahadır</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Robot Locomotion Control</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Biped Robot</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Recurrent Neural Networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Long Short-Term Memory</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Central Pattern Generator</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-03-18</subfield>
  </datafield>
  <controlfield tag="005">20230912111013.0</controlfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="a">10.48623/aperta.263038</subfield>
    <subfield code="i">isVersionOf</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:263039</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:8fd59606e5e3a0d6fb8126f9faa23a9c</subfield>
    <subfield code="s">4082763</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/263039/files/Two-Legged Robot Motion Control With Recurrent Neural Networks.pdf</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/</subfield>
    <subfield code="a">Creative Commons Attribution-NonCommercial-NoDerivatives</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.48623/aperta.263039</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
</record>
53
55
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 5353
İndirme 5555
Veri hacmi 224.6 MB224.6 MB
Tekil görüntülenme 4848
Tekil indirme 3737

Alıntı yap