Dergi makalesi Açık Erişim

Two-Legged Robot Motion Control With Recurrent Neural Networks

Çatalbaş, Bahadır; Morgül, Ömer


JSON

{
  "conceptdoi": "10.48623/aperta.263038", 
  "conceptrecid": "263038", 
  "created": "2023-09-12T11:10:13.006670+00:00", 
  "doi": "10.48623/aperta.263039", 
  "files": [
    {
      "bucket": "aefd1229-950b-4a82-b692-7ae31e905dd1", 
      "checksum": "md5:8fd59606e5e3a0d6fb8126f9faa23a9c", 
      "key": "Two-Legged Robot Motion Control With Recurrent Neural Networks.pdf", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/aefd1229-950b-4a82-b692-7ae31e905dd1/Two-Legged%20Robot%20Motion%20Control%20With%20Recurrent%20Neural%20Networks.pdf"
      }, 
      "size": 4082763, 
      "type": "pdf"
    }
  ], 
  "id": 263039, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.48623/aperta.263039.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/aefd1229-950b-4a82-b692-7ae31e905dd1", 
    "conceptbadge": "https://aperta.ulakbim.gov.tr/badge/doi/10.48623/aperta.263038.svg", 
    "conceptdoi": "https://doi.org/10.48623/aperta.263038", 
    "doi": "https://doi.org/10.48623/aperta.263039", 
    "html": "https://aperta.ulakbim.gov.tr/record/263039", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/263039", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/263039"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "creators": [
      {
        "affiliation": "\u0130hsan Do\u011framac\u0131 Bilkent \u00dcniversitesi", 
        "name": "\u00c7atalba\u015f, Bahad\u0131r", 
        "orcid": "0000-0002-8684-5754"
      }, 
      {
        "affiliation": "\u0130hsan Do\u011framac\u0131 Bilkent \u00dcniversitesi", 
        "name": "Morg\u00fcl, \u00d6mer", 
        "orcid": "0000-0002-3158-3961"
      }
    ], 
    "description": "<p>Legged locomotion is a desirable ability for robotic systems thanks to its agile mobility and wide range of motions that it provides. In this paper, the use of neural network-based nonlinear controller structures which consist of recurrent and feedforward layers have been examined in the dynamically stable walking problem of two-legged robots. In detail, hybrid neural controllers, in which long short-term memory type of neuron models employed at recurrent layers, are utilized in the feedback and feedforward paths. To train these neural networks, supervised learning data sets are created by using a biped robot platform which is controlled by a central pattern generator. Then, the ability of the neural networks to perform stable gait by controlling the robot platform is examined under various ground conditions in the simulation environment. After that, the stable walking generation capacity of the neural networks and the central pattern generators are compared with each other. It is shown that the inclusion of recurrent layer provides smooth transition and control between stance and flight motion phases and L<sub>2</sub>&nbsp;regularization is beneficial for walking performance. Finally, the proposed hybrid neural network models are found to be more successful gait controllers than the central pattern generator, which is employed to generate data sets used in training.</p>", 
    "doi": "10.48623/aperta.263039", 
    "has_grant": true, 
    "journal": {
      "issue": "4", 
      "pages": "59", 
      "title": "Journal of Intelligent & Robotic Systems", 
      "volume": "104"
    }, 
    "keywords": [
      "Robot Locomotion Control", 
      "Biped Robot", 
      "Recurrent Neural Networks", 
      "Long Short-Term Memory", 
      "Central Pattern Generator"
    ], 
    "language": "eng", 
    "license": {
      "id": "cc-by-nc-nd-4.0"
    }, 
    "publication_date": "2022-03-18", 
    "related_identifiers": [
      {
        "identifier": "10.48623/aperta.263038", 
        "relation": "isVersionOf", 
        "scheme": "doi"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "263039"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "263038"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "article", 
      "title": "Dergi makalesi", 
      "type": "publication"
    }, 
    "science_branches": [
      "Teknik Bilimler > Bilgi Sistemleri, Haberle\u015fme ve Kontrol M\u00fchendisli\u011fi > Robotik ve Mekatronik Sistemler > Rota ve Hareket Planlama", 
      "Teknik Bilimler > Bilgi Sistemleri, Haberle\u015fme ve Kontrol M\u00fchendisli\u011fi > Robotik ve Mekatronik Sistemler > \u0130nsans\u0131 Robotlar", 
      "Teknik Bilimler > Bilgisayar Bilimleri > Yapay Zeka, Bilgisayarda \u00d6\u011frenme ve \u00d6r\u00fcnt\u00fc Tan\u0131ma > Sinirsel A\u011flar", 
      "Teknik Bilimler > Bilgi Sistemleri, Haberle\u015fme ve Kontrol M\u00fchendisli\u011fi > Kontrol ve Sistem M\u00fchendisli\u011fi > Do\u011frusal Olmayan Kontrol Sistemleri"
    ], 
    "title": "Two-Legged Robot Motion Control With Recurrent Neural Networks", 
    "tubitak_grants": [
      {
        "program": "1001", 
        "project_number": "120E104", 
        "workgroup": "EEEAG"
      }
    ]
  }, 
  "owners": [
    1274
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 55.0, 
    "unique_downloads": 37.0, 
    "unique_views": 48.0, 
    "version_downloads": 55.0, 
    "version_unique_downloads": 37.0, 
    "version_unique_views": 48.0, 
    "version_views": 53.0, 
    "version_volume": 224551965.0, 
    "views": 53.0, 
    "volume": 224551965.0
  }, 
  "updated": "2023-09-12T11:10:13.106487+00:00"
}
53
55
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 5353
İndirme 5555
Veri hacmi 224.6 MB224.6 MB
Tekil görüntülenme 4848
Tekil indirme 3737

Alıntı yap