Konferans bildirisi Açık Erişim
Güzel Mustafa; Turan Bülent; Şin Bahadır; Baştürk Alper
{ "conceptdoi": "10.48623/aperta.252238", "conceptrecid": "252238", "created": "2023-01-26T18:34:18.921550+00:00", "doi": "10.48623/aperta.252239", "files": [ { "bucket": "e4941846-a801-4aa0-8194-f9994c93700d", "checksum": "md5:e01e6d988c1698b85ea8b3acff6b294e", "key": "Mustafa bildiri.pdf", "links": { "self": "https://aperta.ulakbim.gov.tr/api/files/e4941846-a801-4aa0-8194-f9994c93700d/Mustafa%20bildiri.pdf" }, "size": 1412280, "type": "pdf" } ], "id": 252239, "links": { "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.48623/aperta.252239.svg", "bucket": "https://aperta.ulakbim.gov.tr/api/files/e4941846-a801-4aa0-8194-f9994c93700d", "conceptbadge": "https://aperta.ulakbim.gov.tr/badge/doi/10.48623/aperta.252238.svg", "conceptdoi": "https://doi.org/10.48623/aperta.252238", "doi": "https://doi.org/10.48623/aperta.252239", "html": "https://aperta.ulakbim.gov.tr/record/252239", "latest": "https://aperta.ulakbim.gov.tr/api/records/252239", "latest_html": "https://aperta.ulakbim.gov.tr/record/252239" }, "metadata": { "access_right": "open", "access_right_category": "success", "creators": [ { "affiliation": "Tokat Gaziosmanpa\u015fa \u00dcniversitesi", "name": "G\u00fczel Mustafa" }, { "affiliation": "Tokat Gaziosmanpa\u015fa \u00dcniversitesi", "name": "Turan B\u00fclent" }, { "affiliation": "Sakarya Uygulamal\u0131 Bilimler \u00dcniversitesi", "name": "\u015ein Bahad\u0131r" }, { "affiliation": "Erciyes \u00dcniversitesi", "name": "Ba\u015ft\u00fcrk Alper" } ], "description": "<p>The knowledge of weed numbers is very helpful for many studies due to minimizing weed harm<br>\non the crops as well as knowing the weed species and classes. In this study, we used a deep learning<br>\narchitecture that was capable of detecting some weeds to count the weed numbers instead of classical<br>\nmanual weed counting methods. The pre-trained deep learning weight belongs to YOLOv5 which<br>\nis used in this study, can detect 5 different phenological terms (cotyledon leaves period, 3-5 leaves<br>\nperiod, pre-flowering period, flowering period, and fruit and seed setting period) of some harmful weeds<br>\n(sherlock mustard-Sinapis arvensis L., creeping thistle-Cirsium arvense L. Scop, and forking larkspur-<br>\nConsolida regalis Gray) in wheat production and other crops with 98% highest accuracy. StrongSORT<br>\nwith the OSNet tool is used as the multi-object tracker. The weeds successfully counted from any image<br>\nresources (image, video, webcam, etc.) while avoiding recounting the same object by computer vision. It<br>\nplays an important role in the studies aimed to understand weeds population spread, resistance gaining to<br>\nherbicides by weeds, the economical threshold of weeds, etc. It also provides these parameters cheaper<br>\nand faster than classical methods.</p>", "doi": "10.48623/aperta.252239", "has_grant": true, "keywords": [ "Weeds counting", "deep learning", "StrongSORT" ], "language": "eng", "license": { "id": "cc-by-nc-nd-4.0" }, "publication_date": "2023-01-09", "related_identifiers": [ { "identifier": "10.48623/aperta.252238", "relation": "isVersionOf", "scheme": "doi" } ], "relations": { "version": [ { "count": 1, "index": 0, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "252239" }, "parent": { "pid_type": "recid", "pid_value": "252238" } } ] }, "resource_type": { "subtype": "conferencepaper", "title": "Konferans bildirisi", "type": "publication" }, "science_branches": [ "Teknik Bilimler > Bilgisayar Bilimleri > Bilgisayarla G\u00f6rme" ], "title": "COUNTING OF WEED NUMBERS IN FARMS BY DEEP LEARNING-STRONGSORT", "tubitak_grants": [ { "program": "3501", "project_number": "120O888", "workgroup": "TOVAG" } ] }, "owners": [ 821 ], "revision": 2, "stats": { "downloads": 255.0, "unique_downloads": 216.0, "unique_views": 59.0, "version_downloads": 255.0, "version_unique_downloads": 216.0, "version_unique_views": 59.0, "version_views": 68.0, "version_volume": 360131400.0, "views": 68.0, "volume": 360131400.0 }, "updated": "2023-01-26T18:37:08.135737+00:00" }
Tüm sürümler | Bu sürüm | |
---|---|---|
Görüntülenme | 68 | 68 |
İndirme | 255 | 255 |
Veri hacmi | 360.1 MB | 360.1 MB |
Tekil görüntülenme | 59 | 59 |
Tekil indirme | 216 | 216 |