Konferans bildirisi Açık Erişim

COUNTING OF WEED NUMBERS IN FARMS BY DEEP LEARNING-STRONGSORT

Güzel Mustafa; Turan Bülent; Şin Bahadır; Baştürk Alper


JSON

{
  "conceptdoi": "10.48623/aperta.252238", 
  "conceptrecid": "252238", 
  "created": "2023-01-26T18:34:18.921550+00:00", 
  "doi": "10.48623/aperta.252239", 
  "files": [
    {
      "bucket": "e4941846-a801-4aa0-8194-f9994c93700d", 
      "checksum": "md5:e01e6d988c1698b85ea8b3acff6b294e", 
      "key": "Mustafa bildiri.pdf", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/e4941846-a801-4aa0-8194-f9994c93700d/Mustafa%20bildiri.pdf"
      }, 
      "size": 1412280, 
      "type": "pdf"
    }
  ], 
  "id": 252239, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.48623/aperta.252239.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/e4941846-a801-4aa0-8194-f9994c93700d", 
    "conceptbadge": "https://aperta.ulakbim.gov.tr/badge/doi/10.48623/aperta.252238.svg", 
    "conceptdoi": "https://doi.org/10.48623/aperta.252238", 
    "doi": "https://doi.org/10.48623/aperta.252239", 
    "html": "https://aperta.ulakbim.gov.tr/record/252239", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/252239", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/252239"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "creators": [
      {
        "affiliation": "Tokat Gaziosmanpa\u015fa \u00dcniversitesi", 
        "name": "G\u00fczel Mustafa"
      }, 
      {
        "affiliation": "Tokat Gaziosmanpa\u015fa \u00dcniversitesi", 
        "name": "Turan B\u00fclent"
      }, 
      {
        "affiliation": "Sakarya Uygulamal\u0131 Bilimler \u00dcniversitesi", 
        "name": "\u015ein Bahad\u0131r"
      }, 
      {
        "affiliation": "Erciyes \u00dcniversitesi", 
        "name": "Ba\u015ft\u00fcrk Alper"
      }
    ], 
    "description": "<p>The knowledge of weed numbers is very helpful for many studies due to minimizing weed harm<br>\non the crops as well as knowing the weed species and classes. In this study, we used a deep learning<br>\narchitecture that was capable of detecting some weeds to count the weed numbers instead of classical<br>\nmanual weed counting methods. The pre-trained deep learning weight belongs to YOLOv5 which<br>\nis used in this study, can detect 5 different phenological terms (cotyledon leaves period, 3-5 leaves<br>\nperiod, pre-flowering period, flowering period, and fruit and seed setting period) of some harmful weeds<br>\n(sherlock mustard-Sinapis arvensis L., creeping thistle-Cirsium arvense L. Scop, and forking larkspur-<br>\nConsolida regalis Gray) in wheat production and other crops with 98% highest accuracy. StrongSORT<br>\nwith the OSNet tool is used as the multi-object tracker. The weeds successfully counted from any image<br>\nresources (image, video, webcam, etc.) while avoiding recounting the same object by computer vision. It<br>\nplays an important role in the studies aimed to understand weeds population spread, resistance gaining to<br>\nherbicides by weeds, the economical threshold of weeds, etc. It also provides these parameters cheaper<br>\nand faster than classical methods.</p>", 
    "doi": "10.48623/aperta.252239", 
    "has_grant": true, 
    "keywords": [
      "Weeds counting", 
      "deep learning", 
      "StrongSORT"
    ], 
    "language": "eng", 
    "license": {
      "id": "cc-by-nc-nd-4.0"
    }, 
    "publication_date": "2023-01-09", 
    "related_identifiers": [
      {
        "identifier": "10.48623/aperta.252238", 
        "relation": "isVersionOf", 
        "scheme": "doi"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "252239"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "252238"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "conferencepaper", 
      "title": "Konferans bildirisi", 
      "type": "publication"
    }, 
    "science_branches": [
      "Teknik Bilimler > Bilgisayar Bilimleri > Bilgisayarla G\u00f6rme"
    ], 
    "title": "COUNTING OF WEED NUMBERS IN FARMS BY DEEP LEARNING-STRONGSORT", 
    "tubitak_grants": [
      {
        "program": "3501", 
        "project_number": "120O888", 
        "workgroup": "TOVAG"
      }
    ]
  }, 
  "owners": [
    821
  ], 
  "revision": 2, 
  "stats": {
    "downloads": 255.0, 
    "unique_downloads": 216.0, 
    "unique_views": 59.0, 
    "version_downloads": 255.0, 
    "version_unique_downloads": 216.0, 
    "version_unique_views": 59.0, 
    "version_views": 68.0, 
    "version_volume": 360131400.0, 
    "views": 68.0, 
    "volume": 360131400.0
  }, 
  "updated": "2023-01-26T18:37:08.135737+00:00"
}
68
255
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 6868
İndirme 255255
Veri hacmi 360.1 MB360.1 MB
Tekil görüntülenme 5959
Tekil indirme 216216

Alıntı yap