Konferans bildirisi Açık Erişim
Güzel Mustafa; Turan Bülent; Şin Bahadır; Baştürk Alper
{
"conceptdoi": "10.48623/aperta.252238",
"conceptrecid": "252238",
"created": "2023-01-26T18:34:18.921550+00:00",
"doi": "10.48623/aperta.252239",
"files": [
{
"bucket": "e4941846-a801-4aa0-8194-f9994c93700d",
"checksum": "md5:e01e6d988c1698b85ea8b3acff6b294e",
"key": "Mustafa bildiri.pdf",
"links": {
"self": "https://aperta.ulakbim.gov.tr/api/files/e4941846-a801-4aa0-8194-f9994c93700d/Mustafa%20bildiri.pdf"
},
"size": 1412280,
"type": "pdf"
}
],
"id": 252239,
"links": {
"badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.48623/aperta.252239.svg",
"bucket": "https://aperta.ulakbim.gov.tr/api/files/e4941846-a801-4aa0-8194-f9994c93700d",
"conceptbadge": "https://aperta.ulakbim.gov.tr/badge/doi/10.48623/aperta.252238.svg",
"conceptdoi": "https://doi.org/10.48623/aperta.252238",
"doi": "https://doi.org/10.48623/aperta.252239",
"html": "https://aperta.ulakbim.gov.tr/record/252239",
"latest": "https://aperta.ulakbim.gov.tr/api/records/252239",
"latest_html": "https://aperta.ulakbim.gov.tr/record/252239"
},
"metadata": {
"access_right": "open",
"access_right_category": "success",
"creators": [
{
"affiliation": "Tokat Gaziosmanpa\u015fa \u00dcniversitesi",
"name": "G\u00fczel Mustafa"
},
{
"affiliation": "Tokat Gaziosmanpa\u015fa \u00dcniversitesi",
"name": "Turan B\u00fclent"
},
{
"affiliation": "Sakarya Uygulamal\u0131 Bilimler \u00dcniversitesi",
"name": "\u015ein Bahad\u0131r"
},
{
"affiliation": "Erciyes \u00dcniversitesi",
"name": "Ba\u015ft\u00fcrk Alper"
}
],
"description": "<p>The knowledge of weed numbers is very helpful for many studies due to minimizing weed harm<br>\non the crops as well as knowing the weed species and classes. In this study, we used a deep learning<br>\narchitecture that was capable of detecting some weeds to count the weed numbers instead of classical<br>\nmanual weed counting methods. The pre-trained deep learning weight belongs to YOLOv5 which<br>\nis used in this study, can detect 5 different phenological terms (cotyledon leaves period, 3-5 leaves<br>\nperiod, pre-flowering period, flowering period, and fruit and seed setting period) of some harmful weeds<br>\n(sherlock mustard-Sinapis arvensis L., creeping thistle-Cirsium arvense L. Scop, and forking larkspur-<br>\nConsolida regalis Gray) in wheat production and other crops with 98% highest accuracy. StrongSORT<br>\nwith the OSNet tool is used as the multi-object tracker. The weeds successfully counted from any image<br>\nresources (image, video, webcam, etc.) while avoiding recounting the same object by computer vision. It<br>\nplays an important role in the studies aimed to understand weeds population spread, resistance gaining to<br>\nherbicides by weeds, the economical threshold of weeds, etc. It also provides these parameters cheaper<br>\nand faster than classical methods.</p>",
"doi": "10.48623/aperta.252239",
"has_grant": true,
"keywords": [
"Weeds counting",
"deep learning",
"StrongSORT"
],
"language": "eng",
"license": {
"id": "cc-by-nc-nd-4.0"
},
"publication_date": "2023-01-09",
"related_identifiers": [
{
"identifier": "10.48623/aperta.252238",
"relation": "isVersionOf",
"scheme": "doi"
}
],
"relations": {
"version": [
{
"count": 1,
"index": 0,
"is_last": true,
"last_child": {
"pid_type": "recid",
"pid_value": "252239"
},
"parent": {
"pid_type": "recid",
"pid_value": "252238"
}
}
]
},
"resource_type": {
"subtype": "conferencepaper",
"title": "Konferans bildirisi",
"type": "publication"
},
"science_branches": [
"Teknik Bilimler > Bilgisayar Bilimleri > Bilgisayarla G\u00f6rme"
],
"title": "COUNTING OF WEED NUMBERS IN FARMS BY DEEP LEARNING-STRONGSORT",
"tubitak_grants": [
{
"program": "3501",
"project_number": "120O888",
"workgroup": "TOVAG"
}
]
},
"owners": [
821
],
"revision": 2,
"stats": {
"downloads": 287.0,
"unique_downloads": 246.0,
"unique_views": 99.0,
"version_downloads": 287.0,
"version_unique_downloads": 246.0,
"version_unique_views": 99.0,
"version_views": 114.0,
"version_volume": 405324360.0,
"views": 114.0,
"volume": 405324360.0
},
"updated": "2023-01-26T18:37:08.135737+00:00"
}
| Tüm sürümler | Bu sürüm | |
|---|---|---|
| Görüntülenme | 114 | 114 |
| İndirme | 287 | 287 |
| Veri hacmi | 405.3 MB | 405.3 MB |
| Tekil görüntülenme | 99 | 99 |
| Tekil indirme | 246 | 246 |