Konferans bildirisi Açık Erişim

COUNTING OF WEED NUMBERS IN FARMS BY DEEP LEARNING-STRONGSORT

Güzel Mustafa; Turan Bülent; Şin Bahadır; Baştürk Alper


Citation Style Language JSON

{
  "URL": "https://aperta.ulakbim.gov.tr/record/252239", 
  "abstract": "<p>The knowledge of weed numbers is very helpful for many studies due to minimizing weed harm<br>\non the crops as well as knowing the weed species and classes. In this study, we used a deep learning<br>\narchitecture that was capable of detecting some weeds to count the weed numbers instead of classical<br>\nmanual weed counting methods. The pre-trained deep learning weight belongs to YOLOv5 which<br>\nis used in this study, can detect 5 different phenological terms (cotyledon leaves period, 3-5 leaves<br>\nperiod, pre-flowering period, flowering period, and fruit and seed setting period) of some harmful weeds<br>\n(sherlock mustard-Sinapis arvensis L., creeping thistle-Cirsium arvense L. Scop, and forking larkspur-<br>\nConsolida regalis Gray) in wheat production and other crops with 98% highest accuracy. StrongSORT<br>\nwith the OSNet tool is used as the multi-object tracker. The weeds successfully counted from any image<br>\nresources (image, video, webcam, etc.) while avoiding recounting the same object by computer vision. It<br>\nplays an important role in the studies aimed to understand weeds population spread, resistance gaining to<br>\nherbicides by weeds, the economical threshold of weeds, etc. It also provides these parameters cheaper<br>\nand faster than classical methods.</p>", 
  "author": [
    {
      "family": "G\u00fczel Mustafa"
    }, 
    {
      "family": "Turan B\u00fclent"
    }, 
    {
      "family": "\u015ein Bahad\u0131r"
    }, 
    {
      "family": "Ba\u015ft\u00fcrk Alper"
    }
  ], 
  "id": "252239", 
  "issued": {
    "date-parts": [
      [
        2023, 
        1, 
        9
      ]
    ]
  }, 
  "language": "eng", 
  "title": "COUNTING OF WEED NUMBERS IN FARMS BY DEEP LEARNING-STRONGSORT", 
  "type": "paper-conference"
}
68
255
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 6868
İndirme 255255
Veri hacmi 360.1 MB360.1 MB
Tekil görüntülenme 5959
Tekil indirme 216216

Alıntı yap