Konferans bildirisi Açık Erişim
Güzel Mustafa; Turan Bülent; Şin Bahadır; Baştürk Alper
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="DOI">10.48623/aperta.252239</identifier>
<creators>
<creator>
<creatorName>Güzel Mustafa</creatorName>
<affiliation>Tokat Gaziosmanpaşa Üniversitesi</affiliation>
</creator>
<creator>
<creatorName>Turan Bülent</creatorName>
<affiliation>Tokat Gaziosmanpaşa Üniversitesi</affiliation>
</creator>
<creator>
<creatorName>Şin Bahadır</creatorName>
<affiliation>Sakarya Uygulamalı Bilimler Üniversitesi</affiliation>
</creator>
<creator>
<creatorName>Baştürk Alper</creatorName>
<affiliation>Erciyes Üniversitesi</affiliation>
</creator>
</creators>
<titles>
<title>Counting Of Weed Numbers In Farms By Deep Learning-Strongsort</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2023</publicationYear>
<subjects>
<subject>Weeds counting</subject>
<subject>deep learning</subject>
<subject>StrongSORT</subject>
</subjects>
<dates>
<date dateType="Issued">2023-01-09</date>
</dates>
<language>en</language>
<resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/252239</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.48623/aperta.252238</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="https://creativecommons.org/licenses/by-nc-nd/4.0/">Creative Commons Attribution-NonCommercial-NoDerivatives</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>The knowledge of weed numbers is very helpful for many studies due to minimizing weed harm<br>
on the crops as well as knowing the weed species and classes. In this study, we used a deep learning<br>
architecture that was capable of detecting some weeds to count the weed numbers instead of classical<br>
manual weed counting methods. The pre-trained deep learning weight belongs to YOLOv5 which<br>
is used in this study, can detect 5 different phenological terms (cotyledon leaves period, 3-5 leaves<br>
period, pre-flowering period, flowering period, and fruit and seed setting period) of some harmful weeds<br>
(sherlock mustard-Sinapis arvensis L., creeping thistle-Cirsium arvense L. Scop, and forking larkspur-<br>
Consolida regalis Gray) in wheat production and other crops with 98% highest accuracy. StrongSORT<br>
with the OSNet tool is used as the multi-object tracker. The weeds successfully counted from any image<br>
resources (image, video, webcam, etc.) while avoiding recounting the same object by computer vision. It<br>
plays an important role in the studies aimed to understand weeds population spread, resistance gaining to<br>
herbicides by weeds, the economical threshold of weeds, etc. It also provides these parameters cheaper<br>
and faster than classical methods.</p></description>
</descriptions>
<fundingReferences>
<fundingReference>
<funderName>Türkiye Bilimsel ve Teknolojik Araştirma Kurumu</funderName>
<funderIdentifier funderIdentifierType="Crossref Funder ID">https://doi.org/10.13039/501100004410</funderIdentifier>
<awardNumber>120O888</awardNumber>
</fundingReference>
</fundingReferences>
</resource>
| Tüm sürümler | Bu sürüm | |
|---|---|---|
| Görüntülenme | 114 | 114 |
| İndirme | 287 | 287 |
| Veri hacmi | 405.3 MB | 405.3 MB |
| Tekil görüntülenme | 99 | 99 |
| Tekil indirme | 246 | 246 |