Konferans bildirisi Açık Erişim
Güzel Mustafa; Turan Bülent; Şin Bahadır; Baştürk Alper
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.48623/aperta.252239</identifier> <creators> <creator> <creatorName>Güzel Mustafa</creatorName> <affiliation>Tokat Gaziosmanpaşa Üniversitesi</affiliation> </creator> <creator> <creatorName>Turan Bülent</creatorName> <affiliation>Tokat Gaziosmanpaşa Üniversitesi</affiliation> </creator> <creator> <creatorName>Şin Bahadır</creatorName> <affiliation>Sakarya Uygulamalı Bilimler Üniversitesi</affiliation> </creator> <creator> <creatorName>Baştürk Alper</creatorName> <affiliation>Erciyes Üniversitesi</affiliation> </creator> </creators> <titles> <title>Counting Of Weed Numbers In Farms By Deep Learning-Strongsort</title> </titles> <publisher>Aperta</publisher> <publicationYear>2023</publicationYear> <subjects> <subject>Weeds counting</subject> <subject>deep learning</subject> <subject>StrongSORT</subject> </subjects> <dates> <date dateType="Issued">2023-01-09</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Text">Conference paper</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/252239</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.48623/aperta.252238</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by-nc-nd/4.0/">Creative Commons Attribution-NonCommercial-NoDerivatives</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The knowledge of weed numbers is very helpful for many studies due to minimizing weed harm<br> on the crops as well as knowing the weed species and classes. In this study, we used a deep learning<br> architecture that was capable of detecting some weeds to count the weed numbers instead of classical<br> manual weed counting methods. The pre-trained deep learning weight belongs to YOLOv5 which<br> is used in this study, can detect 5 different phenological terms (cotyledon leaves period, 3-5 leaves<br> period, pre-flowering period, flowering period, and fruit and seed setting period) of some harmful weeds<br> (sherlock mustard-Sinapis arvensis L., creeping thistle-Cirsium arvense L. Scop, and forking larkspur-<br> Consolida regalis Gray) in wheat production and other crops with 98% highest accuracy. StrongSORT<br> with the OSNet tool is used as the multi-object tracker. The weeds successfully counted from any image<br> resources (image, video, webcam, etc.) while avoiding recounting the same object by computer vision. It<br> plays an important role in the studies aimed to understand weeds population spread, resistance gaining to<br> herbicides by weeds, the economical threshold of weeds, etc. It also provides these parameters cheaper<br> and faster than classical methods.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>Türkiye Bilimsel ve Teknolojik Araştirma Kurumu</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">https://doi.org/10.13039/501100004410</funderIdentifier> <awardNumber>120O888</awardNumber> </fundingReference> </fundingReferences> </resource>
Tüm sürümler | Bu sürüm | |
---|---|---|
Görüntülenme | 68 | 68 |
İndirme | 255 | 255 |
Veri hacmi | 360.1 MB | 360.1 MB |
Tekil görüntülenme | 59 | 59 |
Tekil indirme | 216 | 216 |