Dergi makalesi Açık Erişim

Weak statistical convergence and weak filter convergence for unbounded sequences

Kadets, Vladimir; Leonov, Alexander; Orhan, Cihan


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Kadets, Vladimir</dc:creator>
  <dc:creator>Leonov, Alexander</dc:creator>
  <dc:creator>Orhan, Cihan</dc:creator>
  <dc:date>2010-01-01</dc:date>
  <dc:description>For every weakly statistically convergent sequence (x(n)) with increasing norms in a Hilbert space we prove that sup(n) parallel to x(n)parallel to/root n &lt; infinity This estimate is sharp We study analogous problem for sonic other types of weak filter convergence. in particular for the Erdos-Ulam filters, analytical P-filters and F-sigma filters We present also a refinement of the recent Aron-Garcia-Maestre result on weakly dense sequences that tend to infinity in norm (C) 2010 Elsevier Inc. All rights reserved.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/25141</dc:identifier>
  <dc:identifier>oai:zenodo.org:25141</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 371(2) 414-424</dc:source>
  <dc:title>Weak statistical convergence and weak filter convergence for unbounded sequences</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
51
16
görüntülenme
indirilme
Görüntülenme 51
İndirme 16
Veri hacmi 3.1 kB
Tekil görüntülenme 46
Tekil indirme 15

Alıntı yap