Dergi makalesi Açık Erişim
Kadets, Vladimir; Leonov, Alexander; Orhan, Cihan
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Kadets, Vladimir</dc:creator> <dc:creator>Leonov, Alexander</dc:creator> <dc:creator>Orhan, Cihan</dc:creator> <dc:date>2010-01-01</dc:date> <dc:description>For every weakly statistically convergent sequence (x(n)) with increasing norms in a Hilbert space we prove that sup(n) parallel to x(n)parallel to/root n < infinity This estimate is sharp We study analogous problem for sonic other types of weak filter convergence. in particular for the Erdos-Ulam filters, analytical P-filters and F-sigma filters We present also a refinement of the recent Aron-Garcia-Maestre result on weakly dense sequences that tend to infinity in norm (C) 2010 Elsevier Inc. All rights reserved.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/25141</dc:identifier> <dc:identifier>oai:zenodo.org:25141</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 371(2) 414-424</dc:source> <dc:title>Weak statistical convergence and weak filter convergence for unbounded sequences</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
| Görüntülenme | 51 |
| İndirme | 16 |
| Veri hacmi | 3.1 kB |
| Tekil görüntülenme | 46 |
| Tekil indirme | 15 |