Dergi makalesi Açık Erişim

Weak statistical convergence and weak filter convergence for unbounded sequences

   Kadets, Vladimir; Leonov, Alexander; Orhan, Cihan

For every weakly statistically convergent sequence (x(n)) with increasing norms in a Hilbert space we prove that sup(n) parallel to x(n)parallel to/root n < infinity This estimate is sharp We study analogous problem for sonic other types of weak filter convergence. in particular for the Erdos-Ulam filters, analytical P-filters and F-sigma filters We present also a refinement of the recent Aron-Garcia-Maestre result on weakly dense sequences that tend to infinity in norm (C) 2010 Elsevier Inc. All rights reserved.

Dosyalar (192 Bytes)
Dosya adı Boyutu
bib-6fbc2752-a102-44e7-a531-39765e4c8c76.txt
md5:7289ecbf92e28577268d55c8eb59abf3
192 Bytes İndir
51
16
görüntülenme
indirilme
Görüntülenme 51
İndirme 16
Veri hacmi 3.1 kB
Tekil görüntülenme 46
Tekil indirme 15

Alıntı yap