Yayınlanmış 1 Ocak 2010
| Sürüm v1
Dergi makalesi
Açık
Weak statistical convergence and weak filter convergence for unbounded sequences
Oluşturanlar
- 1. Kharkov Natl Univ, Dept Mech & Math, UA-61077 Kharkov, Ukraine
- 2. Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey
Açıklama
For every weakly statistically convergent sequence (x(n)) with increasing norms in a Hilbert space we prove that sup(n) parallel to x(n)parallel to/root n < infinity This estimate is sharp We study analogous problem for sonic other types of weak filter convergence. in particular for the Erdos-Ulam filters, analytical P-filters and F-sigma filters We present also a refinement of the recent Aron-Garcia-Maestre result on weakly dense sequences that tend to infinity in norm (C) 2010 Elsevier Inc. All rights reserved.
Dosyalar
bib-6fbc2752-a102-44e7-a531-39765e4c8c76.txt
Dosyalar
(192 Bytes)
| Ad | Boyut | Hepisini indir |
|---|---|---|
|
md5:7289ecbf92e28577268d55c8eb59abf3
|
192 Bytes | Ön İzleme İndir |