Dergi makalesi Açık Erişim
Kadets, Vladimir; Leonov, Alexander; Orhan, Cihan
For every weakly statistically convergent sequence (x(n)) with increasing norms in a Hilbert space we prove that sup(n) parallel to x(n)parallel to/root n < infinity This estimate is sharp We study analogous problem for sonic other types of weak filter convergence. in particular for the Erdos-Ulam filters, analytical P-filters and F-sigma filters We present also a refinement of the recent Aron-Garcia-Maestre result on weakly dense sequences that tend to infinity in norm (C) 2010 Elsevier Inc. All rights reserved.
| Dosya adı | Boyutu | |
|---|---|---|
|
bib-6fbc2752-a102-44e7-a531-39765e4c8c76.txt
md5:7289ecbf92e28577268d55c8eb59abf3 |
192 Bytes | İndir |
| Görüntülenme | 51 |
| İndirme | 16 |
| Veri hacmi | 3.1 kB |
| Tekil görüntülenme | 46 |
| Tekil indirme | 15 |