Dergi makalesi Açık Erişim
Kadets, Vladimir; Leonov, Alexander; Orhan, Cihan
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/25141</identifier>
<creators>
<creator>
<creatorName>Kadets, Vladimir</creatorName>
<givenName>Vladimir</givenName>
<familyName>Kadets</familyName>
<affiliation>Kharkov Natl Univ, Dept Mech & Math, UA-61077 Kharkov, Ukraine</affiliation>
</creator>
<creator>
<creatorName>Leonov, Alexander</creatorName>
<givenName>Alexander</givenName>
<familyName>Leonov</familyName>
<affiliation>Kharkov Natl Univ, Dept Mech & Math, UA-61077 Kharkov, Ukraine</affiliation>
</creator>
<creator>
<creatorName>Orhan, Cihan</creatorName>
<givenName>Cihan</givenName>
<familyName>Orhan</familyName>
<affiliation>Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Weak Statistical Convergence And Weak Filter Convergence For Unbounded Sequences</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2010</publicationYear>
<dates>
<date dateType="Issued">2010-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/25141</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.jmaa.2010.05.031</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">For every weakly statistically convergent sequence (x(n)) with increasing norms in a Hilbert space we prove that sup(n) parallel to x(n)parallel to/root n &lt; infinity This estimate is sharp We study analogous problem for sonic other types of weak filter convergence. in particular for the Erdos-Ulam filters, analytical P-filters and F-sigma filters We present also a refinement of the recent Aron-Garcia-Maestre result on weakly dense sequences that tend to infinity in norm (C) 2010 Elsevier Inc. All rights reserved.</description>
</descriptions>
</resource>
| Görüntülenme | 51 |
| İndirme | 16 |
| Veri hacmi | 3.1 kB |
| Tekil görüntülenme | 46 |
| Tekil indirme | 15 |