Konferans bildirisi Açık Erişim

An Energy-Efficient FPGA-based Convolutional Neural Network Implementation

Irmak, Hasan; Alachiotis, Nikolaos; Ziener, Daniel


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">An Energy-Efficient FPGA-based Convolutional Neural Network Implementation</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/SIU53274.2021.9477823</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <controlfield tag="001">239292</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Convolutional Neural Networks (CNNs) are a very popular class of artificial neural networks. Current CNN models provide remarkable performance and accuracy in image processing applications. However, their computational complexity and memory requirements are discouraging for embedded real-time applications. This paper proposes a highly optimized CNN accelerator for FPGA platforms. The accelerator is designed as a LeNet CNN architecture focusing on minimizing resource usage and power consumption. Moreover, the proposed accelerator shows more than 2x higher throughput in comparison with other FPGA LeNet accelerators with reaching up 14 K images/sec. The proposed accelerator is implemented on the Nexys DDR 4 board and the power consumption is less than 700 mW which is 3x lower than the current LeNet architectures. Therefore, the proposed solution offers higher energy efficiency without sacrificing the throughput of the CNN.</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Univ Twente, Comp Architecture Embedded Syst, Enschede, Netherlands</subfield>
    <subfield code="a">Alachiotis, Nikolaos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Tech Univ Ilmenau, Comp Architecture &amp; Embedded Syst, Ilmenau, Germany</subfield>
    <subfield code="a">Ziener, Daniel</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">conferencepaper</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Univ Twente, Comp Architecture Embedded Syst, Enschede, Netherlands</subfield>
    <subfield code="a">Irmak, Hasan</subfield>
  </datafield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="a">29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021)</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-01-01</subfield>
  </datafield>
  <controlfield tag="005">20221007103342.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:239292</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:22d9352cae7b2424660e4763bd21b837</subfield>
    <subfield code="s">207</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/239292/files/bib-7688805f-a3c9-4514-bd44-2088b6268934.txt</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
</record>
91
3
görüntülenme
indirilme
Görüntülenme 91
İndirme 3
Veri hacmi 621 Bytes
Tekil görüntülenme 91
Tekil indirme 3

Alıntı yap