Konferans bildirisi Açık Erişim

An Energy-Efficient FPGA-based Convolutional Neural Network Implementation

   Irmak, Hasan; Alachiotis, Nikolaos; Ziener, Daniel

Convolutional Neural Networks (CNNs) are a very popular class of artificial neural networks. Current CNN models provide remarkable performance and accuracy in image processing applications. However, their computational complexity and memory requirements are discouraging for embedded real-time applications. This paper proposes a highly optimized CNN accelerator for FPGA platforms. The accelerator is designed as a LeNet CNN architecture focusing on minimizing resource usage and power consumption. Moreover, the proposed accelerator shows more than 2x higher throughput in comparison with other FPGA LeNet accelerators with reaching up 14 K images/sec. The proposed accelerator is implemented on the Nexys DDR 4 board and the power consumption is less than 700 mW which is 3x lower than the current LeNet architectures. Therefore, the proposed solution offers higher energy efficiency without sacrificing the throughput of the CNN.

Dosyalar (207 Bytes)
Dosya adı Boyutu
bib-7688805f-a3c9-4514-bd44-2088b6268934.txt
md5:22d9352cae7b2424660e4763bd21b837
207 Bytes İndir
70
3
görüntülenme
indirilme
Görüntülenme 70
İndirme 3
Veri hacmi 621 Bytes
Tekil görüntülenme 70
Tekil indirme 3

Alıntı yap