Konferans bildirisi Açık Erişim
Tas, Kubra; Kumlu, Deniz; Erer, Isin
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Pyramid-Context Encoder Network (PEN-Net) for Missing Data Recovery in Ground Penetrating Radar</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1109/TSP52935.2021.9522613</subfield> <subfield code="2">doi</subfield> </datafield> <controlfield tag="001">237908</controlfield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a">A deep learning-based missing data recovery approach is presented for subsurface images with missing samples. The proposed method is based on Pyramid-context Encoder Network (PEN-Net). With this network, region affinity is captured by creating a high-level semantic feature map, and missing data is recovered in a pyramid fashion, for both visual and semantic consistency. Considering missing data cases during subsurface image acquisition, this study aims to obtain plausible recovered images for possible post-processing operations that can be implemented later. Missing data scenarios are constructed in two ways; column-wise and pixel-wise missing data. Each case is tested under 10%, 30% and 50% of missing data scenarios. Based on the experiments that we conducted, it can be observed that better results are obtained with PEN-Net architecture, compared with low rank missing data recovery methods such as Go Decomposition (GoDec) or Low-rank matrix fitting (LmaFit).</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="2">opendefinition.org</subfield> <subfield code="a">cc-by</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey</subfield> <subfield code="a">Kumlu, Deniz</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey</subfield> <subfield code="a">Erer, Isin</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="b">conferencepaper</subfield> <subfield code="a">publication</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey</subfield> <subfield code="a">Tas, Kubra</subfield> </datafield> <datafield tag="711" ind1=" " ind2=" "> <subfield code="a">2021 44TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP)</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-01-01</subfield> </datafield> <controlfield tag="005">20221007100332.0</controlfield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:aperta.ulakbim.gov.tr:237908</subfield> <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="z">md5:1333fd8641ed96e6f2ea7e37731edd6f</subfield> <subfield code="s">219</subfield> <subfield code="u">https://aperta.ulakbim.gov.trrecord/237908/files/bib-4b3e36fe-d427-430d-bf10-2fea8932e1cd.txt</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield> <subfield code="a">Creative Commons Attribution</subfield> </datafield> </record>
Görüntülenme | 21 |
İndirme | 3 |
Veri hacmi | 657 Bytes |
Tekil görüntülenme | 20 |
Tekil indirme | 3 |