Konferans bildirisi Açık Erişim
Tas, Kubra; Kumlu, Deniz; Erer, Isin
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/237908</identifier>
<creators>
<creator>
<creatorName>Tas, Kubra</creatorName>
<givenName>Kubra</givenName>
<familyName>Tas</familyName>
<affiliation>Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey</affiliation>
</creator>
<creator>
<creatorName>Kumlu, Deniz</creatorName>
<givenName>Deniz</givenName>
<familyName>Kumlu</familyName>
<affiliation>Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey</affiliation>
</creator>
<creator>
<creatorName>Erer, Isin</creatorName>
<givenName>Isin</givenName>
<familyName>Erer</familyName>
<affiliation>Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Pyramid-Context Encoder Network (Pen-Net) For Missing Data Recovery In Ground Penetrating Radar</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2021</publicationYear>
<dates>
<date dateType="Issued">2021-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/237908</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/TSP52935.2021.9522613</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">A deep learning-based missing data recovery approach is presented for subsurface images with missing samples. The proposed method is based on Pyramid-context Encoder Network (PEN-Net). With this network, region affinity is captured by creating a high-level semantic feature map, and missing data is recovered in a pyramid fashion, for both visual and semantic consistency. Considering missing data cases during subsurface image acquisition, this study aims to obtain plausible recovered images for possible post-processing operations that can be implemented later. Missing data scenarios are constructed in two ways; column-wise and pixel-wise missing data. Each case is tested under 10%, 30% and 50% of missing data scenarios. Based on the experiments that we conducted, it can be observed that better results are obtained with PEN-Net architecture, compared with low rank missing data recovery methods such as Go Decomposition (GoDec) or Low-rank matrix fitting (LmaFit).</description>
</descriptions>
</resource>
| Görüntülenme | 36 |
| İndirme | 8 |
| Veri hacmi | 1.8 kB |
| Tekil görüntülenme | 35 |
| Tekil indirme | 8 |