Konferans bildirisi Açık Erişim
Tas, Kubra; Kumlu, Deniz; Erer, Isin
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/237908</identifier> <creators> <creator> <creatorName>Tas, Kubra</creatorName> <givenName>Kubra</givenName> <familyName>Tas</familyName> <affiliation>Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey</affiliation> </creator> <creator> <creatorName>Kumlu, Deniz</creatorName> <givenName>Deniz</givenName> <familyName>Kumlu</familyName> <affiliation>Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey</affiliation> </creator> <creator> <creatorName>Erer, Isin</creatorName> <givenName>Isin</givenName> <familyName>Erer</familyName> <affiliation>Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey</affiliation> </creator> </creators> <titles> <title>Pyramid-Context Encoder Network (Pen-Net) For Missing Data Recovery In Ground Penetrating Radar</title> </titles> <publisher>Aperta</publisher> <publicationYear>2021</publicationYear> <dates> <date dateType="Issued">2021-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Conference paper</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/237908</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/TSP52935.2021.9522613</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">A deep learning-based missing data recovery approach is presented for subsurface images with missing samples. The proposed method is based on Pyramid-context Encoder Network (PEN-Net). With this network, region affinity is captured by creating a high-level semantic feature map, and missing data is recovered in a pyramid fashion, for both visual and semantic consistency. Considering missing data cases during subsurface image acquisition, this study aims to obtain plausible recovered images for possible post-processing operations that can be implemented later. Missing data scenarios are constructed in two ways; column-wise and pixel-wise missing data. Each case is tested under 10%, 30% and 50% of missing data scenarios. Based on the experiments that we conducted, it can be observed that better results are obtained with PEN-Net architecture, compared with low rank missing data recovery methods such as Go Decomposition (GoDec) or Low-rank matrix fitting (LmaFit).</description> </descriptions> </resource>
Görüntülenme | 21 |
İndirme | 3 |
Veri hacmi | 657 Bytes |
Tekil görüntülenme | 20 |
Tekil indirme | 3 |