Konferans bildirisi Açık Erişim
Tas, Kubra; Kumlu, Deniz; Erer, Isin
{ "conceptrecid": "237907", "created": "2022-10-07T10:03:31.967678+00:00", "doi": "10.1109/TSP52935.2021.9522613", "files": [ { "bucket": "17c25f0c-fc1d-47c3-9cff-07a046a42e35", "checksum": "md5:1333fd8641ed96e6f2ea7e37731edd6f", "key": "bib-4b3e36fe-d427-430d-bf10-2fea8932e1cd.txt", "links": { "self": "https://aperta.ulakbim.gov.tr/api/files/17c25f0c-fc1d-47c3-9cff-07a046a42e35/bib-4b3e36fe-d427-430d-bf10-2fea8932e1cd.txt" }, "size": 219, "type": "txt" } ], "id": 237908, "links": { "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1109/TSP52935.2021.9522613.svg", "bucket": "https://aperta.ulakbim.gov.tr/api/files/17c25f0c-fc1d-47c3-9cff-07a046a42e35", "doi": "https://doi.org/10.1109/TSP52935.2021.9522613", "html": "https://aperta.ulakbim.gov.tr/record/237908", "latest": "https://aperta.ulakbim.gov.tr/api/records/237908", "latest_html": "https://aperta.ulakbim.gov.tr/record/237908" }, "metadata": { "access_right": "open", "access_right_category": "success", "communities": [ { "id": "tubitak-destekli-proje-yayinlari" } ], "creators": [ { "affiliation": "Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey", "name": "Tas, Kubra" }, { "affiliation": "Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey", "name": "Kumlu, Deniz" }, { "affiliation": "Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey", "name": "Erer, Isin" } ], "description": "A deep learning-based missing data recovery approach is presented for subsurface images with missing samples. The proposed method is based on Pyramid-context Encoder Network (PEN-Net). With this network, region affinity is captured by creating a high-level semantic feature map, and missing data is recovered in a pyramid fashion, for both visual and semantic consistency. Considering missing data cases during subsurface image acquisition, this study aims to obtain plausible recovered images for possible post-processing operations that can be implemented later. Missing data scenarios are constructed in two ways; column-wise and pixel-wise missing data. Each case is tested under 10%, 30% and 50% of missing data scenarios. Based on the experiments that we conducted, it can be observed that better results are obtained with PEN-Net architecture, compared with low rank missing data recovery methods such as Go Decomposition (GoDec) or Low-rank matrix fitting (LmaFit).", "doi": "10.1109/TSP52935.2021.9522613", "has_grant": false, "license": { "id": "cc-by" }, "meeting": { "title": "2021 44TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP)" }, "publication_date": "2021-01-01", "relations": { "version": [ { "count": 1, "index": 0, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "237908" }, "parent": { "pid_type": "recid", "pid_value": "237907" } } ] }, "resource_type": { "subtype": "conferencepaper", "title": "Konferans bildirisi", "type": "publication" }, "science_branches": [ "Di\u011fer" ], "title": "Pyramid-Context Encoder Network (PEN-Net) for Missing Data Recovery in Ground Penetrating Radar" }, "owners": [ 1 ], "revision": 1, "stats": { "downloads": 3.0, "unique_downloads": 3.0, "unique_views": 20.0, "version_downloads": 3.0, "version_unique_downloads": 3.0, "version_unique_views": 20.0, "version_views": 21.0, "version_volume": 657.0, "views": 21.0, "volume": 657.0 }, "updated": "2022-10-07T10:03:32.033032+00:00" }
Görüntülenme | 21 |
İndirme | 3 |
Veri hacmi | 657 Bytes |
Tekil görüntülenme | 20 |
Tekil indirme | 3 |