Konferans bildirisi Açık Erişim

Pyramid-Context Encoder Network (PEN-Net) for Missing Data Recovery in Ground Penetrating Radar

Tas, Kubra; Kumlu, Deniz; Erer, Isin


JSON

{
  "conceptrecid": "237907", 
  "created": "2022-10-07T10:03:31.967678+00:00", 
  "doi": "10.1109/TSP52935.2021.9522613", 
  "files": [
    {
      "bucket": "17c25f0c-fc1d-47c3-9cff-07a046a42e35", 
      "checksum": "md5:1333fd8641ed96e6f2ea7e37731edd6f", 
      "key": "bib-4b3e36fe-d427-430d-bf10-2fea8932e1cd.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/17c25f0c-fc1d-47c3-9cff-07a046a42e35/bib-4b3e36fe-d427-430d-bf10-2fea8932e1cd.txt"
      }, 
      "size": 219, 
      "type": "txt"
    }
  ], 
  "id": 237908, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1109/TSP52935.2021.9522613.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/17c25f0c-fc1d-47c3-9cff-07a046a42e35", 
    "doi": "https://doi.org/10.1109/TSP52935.2021.9522613", 
    "html": "https://aperta.ulakbim.gov.tr/record/237908", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/237908", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/237908"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-destekli-proje-yayinlari"
      }
    ], 
    "creators": [
      {
        "affiliation": "Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey", 
        "name": "Tas, Kubra"
      }, 
      {
        "affiliation": "Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey", 
        "name": "Kumlu, Deniz"
      }, 
      {
        "affiliation": "Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey", 
        "name": "Erer, Isin"
      }
    ], 
    "description": "A deep learning-based missing data recovery approach is presented for subsurface images with missing samples. The proposed method is based on Pyramid-context Encoder Network (PEN-Net). With this network, region affinity is captured by creating a high-level semantic feature map, and missing data is recovered in a pyramid fashion, for both visual and semantic consistency. Considering missing data cases during subsurface image acquisition, this study aims to obtain plausible recovered images for possible post-processing operations that can be implemented later. Missing data scenarios are constructed in two ways; column-wise and pixel-wise missing data. Each case is tested under 10%, 30% and 50% of missing data scenarios. Based on the experiments that we conducted, it can be observed that better results are obtained with PEN-Net architecture, compared with low rank missing data recovery methods such as Go Decomposition (GoDec) or Low-rank matrix fitting (LmaFit).", 
    "doi": "10.1109/TSP52935.2021.9522613", 
    "has_grant": false, 
    "license": {
      "id": "cc-by"
    }, 
    "meeting": {
      "title": "2021 44TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP)"
    }, 
    "publication_date": "2021-01-01", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "237908"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "237907"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "conferencepaper", 
      "title": "Konferans bildirisi", 
      "type": "publication"
    }, 
    "science_branches": [
      "Di\u011fer"
    ], 
    "title": "Pyramid-Context Encoder Network (PEN-Net) for Missing Data Recovery in Ground Penetrating Radar"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 3.0, 
    "unique_downloads": 3.0, 
    "unique_views": 20.0, 
    "version_downloads": 3.0, 
    "version_unique_downloads": 3.0, 
    "version_unique_views": 20.0, 
    "version_views": 21.0, 
    "version_volume": 657.0, 
    "views": 21.0, 
    "volume": 657.0
  }, 
  "updated": "2022-10-07T10:03:32.033032+00:00"
}
21
3
görüntülenme
indirilme
Görüntülenme 21
İndirme 3
Veri hacmi 657 Bytes
Tekil görüntülenme 20
Tekil indirme 3

Alıntı yap