Konferans bildirisi Açık Erişim
Tas, Kubra; Kumlu, Deniz; Erer, Isin
{
"conceptrecid": "237907",
"created": "2022-10-07T10:03:31.967678+00:00",
"doi": "10.1109/TSP52935.2021.9522613",
"files": [
{
"bucket": "17c25f0c-fc1d-47c3-9cff-07a046a42e35",
"checksum": "md5:1333fd8641ed96e6f2ea7e37731edd6f",
"key": "bib-4b3e36fe-d427-430d-bf10-2fea8932e1cd.txt",
"links": {
"self": "https://aperta.ulakbim.gov.tr/api/files/17c25f0c-fc1d-47c3-9cff-07a046a42e35/bib-4b3e36fe-d427-430d-bf10-2fea8932e1cd.txt"
},
"size": 219,
"type": "txt"
}
],
"id": 237908,
"links": {
"badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1109/TSP52935.2021.9522613.svg",
"bucket": "https://aperta.ulakbim.gov.tr/api/files/17c25f0c-fc1d-47c3-9cff-07a046a42e35",
"doi": "https://doi.org/10.1109/TSP52935.2021.9522613",
"html": "https://aperta.ulakbim.gov.tr/record/237908",
"latest": "https://aperta.ulakbim.gov.tr/api/records/237908",
"latest_html": "https://aperta.ulakbim.gov.tr/record/237908"
},
"metadata": {
"access_right": "open",
"access_right_category": "success",
"communities": [
{
"id": "tubitak-destekli-proje-yayinlari"
}
],
"creators": [
{
"affiliation": "Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey",
"name": "Tas, Kubra"
},
{
"affiliation": "Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey",
"name": "Kumlu, Deniz"
},
{
"affiliation": "Istanbul Tech Univ, Elect & Commun Dept, Istanbul, Turkey",
"name": "Erer, Isin"
}
],
"description": "A deep learning-based missing data recovery approach is presented for subsurface images with missing samples. The proposed method is based on Pyramid-context Encoder Network (PEN-Net). With this network, region affinity is captured by creating a high-level semantic feature map, and missing data is recovered in a pyramid fashion, for both visual and semantic consistency. Considering missing data cases during subsurface image acquisition, this study aims to obtain plausible recovered images for possible post-processing operations that can be implemented later. Missing data scenarios are constructed in two ways; column-wise and pixel-wise missing data. Each case is tested under 10%, 30% and 50% of missing data scenarios. Based on the experiments that we conducted, it can be observed that better results are obtained with PEN-Net architecture, compared with low rank missing data recovery methods such as Go Decomposition (GoDec) or Low-rank matrix fitting (LmaFit).",
"doi": "10.1109/TSP52935.2021.9522613",
"has_grant": false,
"license": {
"id": "cc-by"
},
"meeting": {
"title": "2021 44TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP)"
},
"publication_date": "2021-01-01",
"relations": {
"version": [
{
"count": 1,
"index": 0,
"is_last": true,
"last_child": {
"pid_type": "recid",
"pid_value": "237908"
},
"parent": {
"pid_type": "recid",
"pid_value": "237907"
}
}
]
},
"resource_type": {
"subtype": "conferencepaper",
"title": "Konferans bildirisi",
"type": "publication"
},
"science_branches": [
"Di\u011fer"
],
"title": "Pyramid-Context Encoder Network (PEN-Net) for Missing Data Recovery in Ground Penetrating Radar"
},
"owners": [
1
],
"revision": 1,
"stats": {
"downloads": 8.0,
"unique_downloads": 8.0,
"unique_views": 35.0,
"version_downloads": 8.0,
"version_unique_downloads": 8.0,
"version_unique_views": 35.0,
"version_views": 36.0,
"version_volume": 1752.0,
"views": 36.0,
"volume": 1752.0
},
"updated": "2022-10-07T10:03:32.033032+00:00"
}
| Görüntülenme | 36 |
| İndirme | 8 |
| Veri hacmi | 1.8 kB |
| Tekil görüntülenme | 35 |
| Tekil indirme | 8 |