Konferans bildirisi Açık Erişim
Gokay, Dilara; Simsar, Enis; Atici, Efehan; Ahmetoglu, Alper; Yuksel, Atif Emre; Yanardag, Pinar
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Gokay, Dilara</dc:creator> <dc:creator>Simsar, Enis</dc:creator> <dc:creator>Atici, Efehan</dc:creator> <dc:creator>Ahmetoglu, Alper</dc:creator> <dc:creator>Yuksel, Atif Emre</dc:creator> <dc:creator>Yanardag, Pinar</dc:creator> <dc:date>2021-01-01</dc:date> <dc:description>In this paper, we propose a graph-based image-to-image translation framework for generating images. We use rich data collected from the popular creativity platform Artbreeder', where users interpolate multiple GAN-generated images to create artworks. This unique approach of creating new images leads to a tree-like structure where one can track historical data about the creation of a particular image. Inspired by this structure, we propose a novel graph-to-image translation model called Graph2Pix, which takes a graph and corresponding images as input and generates a single image as output. Our experiments show that Graph2Pix is able to outperform several image-to-image translation frameworks on benchmark metrics, including LPIPS (with a 25% improvement) and human perception studies (n = 60), where users preferred the images generated by our method 81.5% of the time.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/237762</dc:identifier> <dc:identifier>oai:aperta.ulakbim.gov.tr:237762</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:title>Graph2Pix: A Graph-Based Image to Image Translation Framework</dc:title> <dc:type>info:eu-repo/semantics/conferencePaper</dc:type> <dc:type>publication-conferencepaper</dc:type> </oai_dc:dc>
Görüntülenme | 20 |
İndirme | 5 |
Veri hacmi | 1.1 kB |
Tekil görüntülenme | 18 |
Tekil indirme | 5 |