Konferans bildirisi Açık Erişim

Graph2Pix: A Graph-Based Image to Image Translation Framework

Gokay, Dilara; Simsar, Enis; Atici, Efehan; Ahmetoglu, Alper; Yuksel, Atif Emre; Yanardag, Pinar


JSON

{
  "conceptrecid": "237761", 
  "created": "2022-10-07T10:01:17.143941+00:00", 
  "doi": "10.1109/ICCVW54120.2021.00227", 
  "files": [
    {
      "bucket": "cd4bfb73-46e2-4235-9bc9-c98c1f54569c", 
      "checksum": "md5:355f1be7388c5c96412f21895b0e9ad5", 
      "key": "bib-54bf792e-8fd2-4341-a67a-47097a6dcaf8.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/cd4bfb73-46e2-4235-9bc9-c98c1f54569c/bib-54bf792e-8fd2-4341-a67a-47097a6dcaf8.txt"
      }, 
      "size": 226, 
      "type": "txt"
    }
  ], 
  "id": 237762, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1109/ICCVW54120.2021.00227.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/cd4bfb73-46e2-4235-9bc9-c98c1f54569c", 
    "doi": "https://doi.org/10.1109/ICCVW54120.2021.00227", 
    "html": "https://aperta.ulakbim.gov.tr/record/237762", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/237762", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/237762"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-destekli-proje-yayinlari"
      }
    ], 
    "creators": [
      {
        "affiliation": "Tech Univ Munich, Munich, Germany", 
        "name": "Gokay, Dilara"
      }, 
      {
        "name": "Simsar, Enis"
      }, 
      {
        "affiliation": "Bogazici Univ, Bebek, Turkey", 
        "name": "Atici, Efehan"
      }, 
      {
        "affiliation": "Bogazici Univ, Bebek, Turkey", 
        "name": "Ahmetoglu, Alper"
      }, 
      {
        "affiliation": "Bogazici Univ, Bebek, Turkey", 
        "name": "Yuksel, Atif Emre"
      }, 
      {
        "affiliation": "Bogazici Univ, Bebek, Turkey", 
        "name": "Yanardag, Pinar"
      }
    ], 
    "description": "In this paper, we propose a graph-based image-to-image translation framework for generating images. We use rich data collected from the popular creativity platform Artbreeder', where users interpolate multiple GAN-generated images to create artworks. This unique approach of creating new images leads to a tree-like structure where one can track historical data about the creation of a particular image. Inspired by this structure, we propose a novel graph-to-image translation model called Graph2Pix, which takes a graph and corresponding images as input and generates a single image as output. Our experiments show that Graph2Pix is able to outperform several image-to-image translation frameworks on benchmark metrics, including LPIPS (with a 25% improvement) and human perception studies (n = 60), where users preferred the images generated by our method 81.5% of the time.", 
    "doi": "10.1109/ICCVW54120.2021.00227", 
    "has_grant": false, 
    "license": {
      "id": "cc-by"
    }, 
    "meeting": {
      "title": "2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021)"
    }, 
    "publication_date": "2021-01-01", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "237762"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "237761"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "conferencepaper", 
      "title": "Konferans bildirisi", 
      "type": "publication"
    }, 
    "science_branches": [
      "Di\u011fer"
    ], 
    "title": "Graph2Pix: A Graph-Based Image to Image Translation Framework"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 5.0, 
    "unique_downloads": 5.0, 
    "unique_views": 18.0, 
    "version_downloads": 5.0, 
    "version_unique_downloads": 5.0, 
    "version_unique_views": 18.0, 
    "version_views": 20.0, 
    "version_volume": 1130.0, 
    "views": 20.0, 
    "volume": 1130.0
  }, 
  "updated": "2022-10-07T10:01:17.212078+00:00"
}
20
5
görüntülenme
indirilme
Görüntülenme 20
İndirme 5
Veri hacmi 1.1 kB
Tekil görüntülenme 18
Tekil indirme 5

Alıntı yap