Konferans bildirisi Açık Erişim
Gokay, Dilara; Simsar, Enis; Atici, Efehan; Ahmetoglu, Alper; Yuksel, Atif Emre; Yanardag, Pinar
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/237762</identifier> <creators> <creator> <creatorName>Gokay, Dilara</creatorName> <givenName>Dilara</givenName> <familyName>Gokay</familyName> <affiliation>Tech Univ Munich, Munich, Germany</affiliation> </creator> <creator> <creatorName>Simsar, Enis</creatorName> <givenName>Enis</givenName> <familyName>Simsar</familyName> </creator> <creator> <creatorName>Atici, Efehan</creatorName> <givenName>Efehan</givenName> <familyName>Atici</familyName> <affiliation>Bogazici Univ, Bebek, Turkey</affiliation> </creator> <creator> <creatorName>Ahmetoglu, Alper</creatorName> <givenName>Alper</givenName> <familyName>Ahmetoglu</familyName> <affiliation>Bogazici Univ, Bebek, Turkey</affiliation> </creator> <creator> <creatorName>Yuksel, Atif Emre</creatorName> <givenName>Atif Emre</givenName> <familyName>Yuksel</familyName> <affiliation>Bogazici Univ, Bebek, Turkey</affiliation> </creator> <creator> <creatorName>Yanardag, Pinar</creatorName> <givenName>Pinar</givenName> <familyName>Yanardag</familyName> <affiliation>Bogazici Univ, Bebek, Turkey</affiliation> </creator> </creators> <titles> <title>Graph2Pix: A Graph-Based Image To Image Translation Framework</title> </titles> <publisher>Aperta</publisher> <publicationYear>2021</publicationYear> <dates> <date dateType="Issued">2021-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Conference paper</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/237762</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/ICCVW54120.2021.00227</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">In this paper, we propose a graph-based image-to-image translation framework for generating images. We use rich data collected from the popular creativity platform Artbreeder', where users interpolate multiple GAN-generated images to create artworks. This unique approach of creating new images leads to a tree-like structure where one can track historical data about the creation of a particular image. Inspired by this structure, we propose a novel graph-to-image translation model called Graph2Pix, which takes a graph and corresponding images as input and generates a single image as output. Our experiments show that Graph2Pix is able to outperform several image-to-image translation frameworks on benchmark metrics, including LPIPS (with a 25% improvement) and human perception studies (n = 60), where users preferred the images generated by our method 81.5% of the time.</description> </descriptions> </resource>
Görüntülenme | 20 |
İndirme | 5 |
Veri hacmi | 1.1 kB |
Tekil görüntülenme | 18 |
Tekil indirme | 5 |