Konferans bildirisi Açık Erişim
Nojehdeh, Mohammadreza Esmali; Parvin, Sajjad; Altun, Mustafa
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Nojehdeh, Mohammadreza Esmali</dc:creator> <dc:creator>Parvin, Sajjad</dc:creator> <dc:creator>Altun, Mustafa</dc:creator> <dc:date>2021-01-01</dc:date> <dc:description>In this paper, we propose an efficient method to realize a convolution layer of the convolution neural networks (CNNs). Inspired by the hilly-connected neural network architecture, we introduce an efficient computation approach to implement convolution operations. Also, to reduce hardware complexity, we implement convolutional layers under the time-multiplexed architecture where computing resources are re-used in the multiply-accumulate (MAC) blocks. A comprehensive evaluation of convolution layers shows using our proposed method when compared to the conventional MAC-based method results up to 97% and 50% reduction in dissipated power and computation time, respectively.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/234352</dc:identifier> <dc:identifier>oai:aperta.ulakbim.gov.tr:234352</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:title>Efficient Hardware Implementation of Convolution Layers Using Multiply-Accumulate Blocks</dc:title> <dc:type>info:eu-repo/semantics/conferencePaper</dc:type> <dc:type>publication-conferencepaper</dc:type> </oai_dc:dc>
Görüntülenme | 15 |
İndirme | 9 |
Veri hacmi | 1.8 kB |
Tekil görüntülenme | 14 |
Tekil indirme | 9 |