Konferans bildirisi Açık Erişim
Nojehdeh, Mohammadreza Esmali; Parvin, Sajjad; Altun, Mustafa
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/234352</identifier> <creators> <creator> <creatorName>Nojehdeh, Mohammadreza Esmali</creatorName> <givenName>Mohammadreza Esmali</givenName> <familyName>Nojehdeh</familyName> <affiliation>Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey</affiliation> </creator> <creator> <creatorName>Parvin, Sajjad</creatorName> <givenName>Sajjad</givenName> <familyName>Parvin</familyName> <affiliation>Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey</affiliation> </creator> <creator> <creatorName>Altun, Mustafa</creatorName> <givenName>Mustafa</givenName> <familyName>Altun</familyName> <affiliation>Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey</affiliation> </creator> </creators> <titles> <title>Efficient Hardware Implementation Of Convolution Layers Using Multiply-Accumulate Blocks</title> </titles> <publisher>Aperta</publisher> <publicationYear>2021</publicationYear> <dates> <date dateType="Issued">2021-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Conference paper</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/234352</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/ISVLSI51109.2021.00079</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">In this paper, we propose an efficient method to realize a convolution layer of the convolution neural networks (CNNs). Inspired by the hilly-connected neural network architecture, we introduce an efficient computation approach to implement convolution operations. Also, to reduce hardware complexity, we implement convolutional layers under the time-multiplexed architecture where computing resources are re-used in the multiply-accumulate (MAC) blocks. A comprehensive evaluation of convolution layers shows using our proposed method when compared to the conventional MAC-based method results up to 97% and 50% reduction in dissipated power and computation time, respectively.</description> </descriptions> </resource>
Görüntülenme | 15 |
İndirme | 9 |
Veri hacmi | 1.8 kB |
Tekil görüntülenme | 14 |
Tekil indirme | 9 |