Konferans bildirisi Açık Erişim
Nojehdeh, Mohammadreza Esmali; Parvin, Sajjad; Altun, Mustafa
{ "@context": "https://schema.org/", "@id": 234352, "@type": "ScholarlyArticle", "creator": [ { "@type": "Person", "affiliation": "Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey", "name": "Nojehdeh, Mohammadreza Esmali" }, { "@type": "Person", "affiliation": "Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey", "name": "Parvin, Sajjad" }, { "@type": "Person", "affiliation": "Istanbul Tech Univ, Dept Elect & Commun Engn, TR-34469 Istanbul, Turkey", "name": "Altun, Mustafa" } ], "datePublished": "2021-01-01", "description": "In this paper, we propose an efficient method to realize a convolution layer of the convolution neural networks (CNNs). Inspired by the hilly-connected neural network architecture, we introduce an efficient computation approach to implement convolution operations. Also, to reduce hardware complexity, we implement convolutional layers under the time-multiplexed architecture where computing resources are re-used in the multiply-accumulate (MAC) blocks. A comprehensive evaluation of convolution layers shows using our proposed method when compared to the conventional MAC-based method results up to 97% and 50% reduction in dissipated power and computation time, respectively.", "headline": "Efficient Hardware Implementation of Convolution Layers Using Multiply-Accumulate Blocks", "identifier": 234352, "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", "license": "http://www.opendefinition.org/licenses/cc-by", "name": "Efficient Hardware Implementation of Convolution Layers Using Multiply-Accumulate Blocks", "url": "https://aperta.ulakbim.gov.tr/record/234352" }
Görüntülenme | 15 |
İndirme | 9 |
Veri hacmi | 1.8 kB |
Tekil görüntülenme | 14 |
Tekil indirme | 9 |