Dergi makalesi Açık Erişim
Ilhan, Fatih; Karaahmetoglu, Oguzhan; Balaban, Ismail; Kozat, Suleyman Serdar
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
<subfield code="o">oai:aperta.ulakbim.gov.tr:234290</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">We investigate nonlinear regression for nonstationary sequential data. In most real-life applications such as business domains including finance, retail, energy, and economy, time series data exhibit nonstationarity due to the temporally varying dynamics of the underlying system. We introduce a novel recurrent neural network (RNN) architecture, which adaptively switches between internal regimes in a Markovian way to model the nonstationary nature of the given data. Our model, Markovian RNN employs a hidden Markov model (HMM) for regime transitions, where each regime controls hidden state transitions of the recurrent cell independently. We jointly optimize the whole network in an end-to-end fashion. We demonstrate the significant performance gains compared to conventional methods such as Markov Switching ARIMA, RNN variants and recent statistical and deep learning-based methods through an extensive set of experiments with synthetic and real-life datasets. We also interpret the inferred parameters and regime belief values to analyze the underlying dynamics of the given sequences.</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">article</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Ilhan, Fatih</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:088a0bb1a07afa084ca1d121f26fc4c6</subfield>
<subfield code="s">235</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/234290/files/bib-d34c9712-418a-41f0-9285-54839d0646eb.txt</subfield>
</datafield>
<controlfield tag="005">20221007090027.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2021-01-01</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1109/TNNLS.2021.3100528</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Markovian RNN: An Adaptive Time Series Prediction Network With HMM-Based Switching for Nonstationary Environments</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="4">
<subfield code="p">IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Karaahmetoglu, Oguzhan</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Balaban, Ismail</subfield>
<subfield code="u">DataBoss AS, ODTU Teknokent, TR-06800 Ankara, Turkey</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Kozat, Suleyman Serdar</subfield>
</datafield>
<controlfield tag="001">234290</controlfield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
</datafield>
</record>
| Görüntülenme | 39 |
| İndirme | 9 |
| Veri hacmi | 2.1 kB |
| Tekil görüntülenme | 35 |
| Tekil indirme | 9 |