Dergi makalesi Açık Erişim

Markovian RNN: An Adaptive Time Series Prediction Network With HMM-Based Switching for Nonstationary Environments

   Ilhan, Fatih; Karaahmetoglu, Oguzhan; Balaban, Ismail; Kozat, Suleyman Serdar

We investigate nonlinear regression for nonstationary sequential data. In most real-life applications such as business domains including finance, retail, energy, and economy, time series data exhibit nonstationarity due to the temporally varying dynamics of the underlying system. We introduce a novel recurrent neural network (RNN) architecture, which adaptively switches between internal regimes in a Markovian way to model the nonstationary nature of the given data. Our model, Markovian RNN employs a hidden Markov model (HMM) for regime transitions, where each regime controls hidden state transitions of the recurrent cell independently. We jointly optimize the whole network in an end-to-end fashion. We demonstrate the significant performance gains compared to conventional methods such as Markov Switching ARIMA, RNN variants and recent statistical and deep learning-based methods through an extensive set of experiments with synthetic and real-life datasets. We also interpret the inferred parameters and regime belief values to analyze the underlying dynamics of the given sequences.

Dosyalar (235 Bytes)
Dosya adı Boyutu
bib-d34c9712-418a-41f0-9285-54839d0646eb.txt
md5:088a0bb1a07afa084ca1d121f26fc4c6
235 Bytes İndir
39
9
görüntülenme
indirilme
Görüntülenme 39
İndirme 9
Veri hacmi 2.1 kB
Tekil görüntülenme 35
Tekil indirme 9

Alıntı yap