Dergi makalesi Açık Erişim
Ilhan, Fatih; Karaahmetoglu, Oguzhan; Balaban, Ismail; Kozat, Suleyman Serdar
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/234290</identifier>
<creators>
<creator>
<creatorName>Ilhan, Fatih</creatorName>
<givenName>Fatih</givenName>
<familyName>Ilhan</familyName>
</creator>
<creator>
<creatorName>Karaahmetoglu, Oguzhan</creatorName>
<givenName>Oguzhan</givenName>
<familyName>Karaahmetoglu</familyName>
</creator>
<creator>
<creatorName>Balaban, Ismail</creatorName>
<givenName>Ismail</givenName>
<familyName>Balaban</familyName>
<affiliation>DataBoss AS, ODTU Teknokent, TR-06800 Ankara, Turkey</affiliation>
</creator>
<creator>
<creatorName>Kozat, Suleyman Serdar</creatorName>
<givenName>Suleyman Serdar</givenName>
<familyName>Kozat</familyName>
</creator>
</creators>
<titles>
<title>Markovian Rnn: An Adaptive Time Series Prediction Network With Hmm-Based Switching For Nonstationary Environments</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2021</publicationYear>
<dates>
<date dateType="Issued">2021-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/234290</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/TNNLS.2021.3100528</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">We investigate nonlinear regression for nonstationary sequential data. In most real-life applications such as business domains including finance, retail, energy, and economy, time series data exhibit nonstationarity due to the temporally varying dynamics of the underlying system. We introduce a novel recurrent neural network (RNN) architecture, which adaptively switches between internal regimes in a Markovian way to model the nonstationary nature of the given data. Our model, Markovian RNN employs a hidden Markov model (HMM) for regime transitions, where each regime controls hidden state transitions of the recurrent cell independently. We jointly optimize the whole network in an end-to-end fashion. We demonstrate the significant performance gains compared to conventional methods such as Markov Switching ARIMA, RNN variants and recent statistical and deep learning-based methods through an extensive set of experiments with synthetic and real-life datasets. We also interpret the inferred parameters and regime belief values to analyze the underlying dynamics of the given sequences.</description>
</descriptions>
</resource>
| Görüntülenme | 39 |
| İndirme | 9 |
| Veri hacmi | 2.1 kB |
| Tekil görüntülenme | 35 |
| Tekil indirme | 9 |