Dergi makalesi Açık Erişim

Generalized Huberman-Rudnick scaling law and robustness of q-Gaussian probability distributions

Afsar, Ozgur; Tirnakli, Ugur


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Afsar, Ozgur</dc:creator>
  <dc:creator>Tirnakli, Ugur</dc:creator>
  <dc:date>2013-01-01</dc:date>
  <dc:description>We generalize Huberman-Rudnick universal scaling law for all periodic windows of the logistic map and show the robustness of q-Gaussian probability distributions in the vicinity of chaos threshold. Our scaling relation is universal for the self-similar windows of the map which exhibit period-doubling subharmonic bifurcations. Using this generalized scaling argument, for all periodic windows, as chaos threshold is approached, a developing convergence to q-Gaussian is numerically obtained both in the central regions and tails of the probability distributions of sums of iterates. Copyright (C) EPLA, 2013</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/13007</dc:identifier>
  <dc:identifier>oai:zenodo.org:13007</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>EPL 101(2)</dc:source>
  <dc:title>Generalized Huberman-Rudnick scaling law and robustness of q-Gaussian probability distributions</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
21
5
görüntülenme
indirilme
Görüntülenme 21
İndirme 5
Veri hacmi 710 Bytes
Tekil görüntülenme 20
Tekil indirme 5

Alıntı yap