Dergi makalesi Açık Erişim

Generalized Huberman-Rudnick scaling law and robustness of q-Gaussian probability distributions

   Afsar, Ozgur; Tirnakli, Ugur

We generalize Huberman-Rudnick universal scaling law for all periodic windows of the logistic map and show the robustness of q-Gaussian probability distributions in the vicinity of chaos threshold. Our scaling relation is universal for the self-similar windows of the map which exhibit period-doubling subharmonic bifurcations. Using this generalized scaling argument, for all periodic windows, as chaos threshold is approached, a developing convergence to q-Gaussian is numerically obtained both in the central regions and tails of the probability distributions of sums of iterates. Copyright (C) EPLA, 2013

Dosyalar (142 Bytes)
Dosya adı Boyutu
bib-6f2c92e7-5005-46b1-91f5-823836fbc2a5.txt
md5:b317eea07efa56d282d835e94afb1ecf
142 Bytes İndir
21
5
görüntülenme
indirilme
Görüntülenme 21
İndirme 5
Veri hacmi 710 Bytes
Tekil görüntülenme 20
Tekil indirme 5

Alıntı yap