Dergi makalesi Açık Erişim
Afsar, Ozgur; Tirnakli, Ugur
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/13007</identifier> <creators> <creator> <creatorName>Afsar, Ozgur</creatorName> <givenName>Ozgur</givenName> <familyName>Afsar</familyName> <affiliation>Ege Univ, Fac Sci, Dept Phys, TR-35100 Izmir, Turkey</affiliation> </creator> <creator> <creatorName>Tirnakli, Ugur</creatorName> <givenName>Ugur</givenName> <familyName>Tirnakli</familyName> </creator> </creators> <titles> <title>Generalized Huberman-Rudnick Scaling Law And Robustness Of Q-Gaussian Probability Distributions</title> </titles> <publisher>Aperta</publisher> <publicationYear>2013</publicationYear> <dates> <date dateType="Issued">2013-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/13007</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1209/0295-5075/101/20003</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">We generalize Huberman-Rudnick universal scaling law for all periodic windows of the logistic map and show the robustness of q-Gaussian probability distributions in the vicinity of chaos threshold. Our scaling relation is universal for the self-similar windows of the map which exhibit period-doubling subharmonic bifurcations. Using this generalized scaling argument, for all periodic windows, as chaos threshold is approached, a developing convergence to q-Gaussian is numerically obtained both in the central regions and tails of the probability distributions of sums of iterates. Copyright (C) EPLA, 2013</description> </descriptions> </resource>
Görüntülenme | 21 |
İndirme | 5 |
Veri hacmi | 710 Bytes |
Tekil görüntülenme | 20 |
Tekil indirme | 5 |