Dergi makalesi Açık Erişim
Afsar, Ozgur; Tirnakli, Ugur
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/13007</identifier>
<creators>
<creator>
<creatorName>Afsar, Ozgur</creatorName>
<givenName>Ozgur</givenName>
<familyName>Afsar</familyName>
<affiliation>Ege Univ, Fac Sci, Dept Phys, TR-35100 Izmir, Turkey</affiliation>
</creator>
<creator>
<creatorName>Tirnakli, Ugur</creatorName>
<givenName>Ugur</givenName>
<familyName>Tirnakli</familyName>
</creator>
</creators>
<titles>
<title>Generalized Huberman-Rudnick Scaling Law And Robustness Of Q-Gaussian Probability Distributions</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2013</publicationYear>
<dates>
<date dateType="Issued">2013-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/13007</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1209/0295-5075/101/20003</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">We generalize Huberman-Rudnick universal scaling law for all periodic windows of the logistic map and show the robustness of q-Gaussian probability distributions in the vicinity of chaos threshold. Our scaling relation is universal for the self-similar windows of the map which exhibit period-doubling subharmonic bifurcations. Using this generalized scaling argument, for all periodic windows, as chaos threshold is approached, a developing convergence to q-Gaussian is numerically obtained both in the central regions and tails of the probability distributions of sums of iterates. Copyright (C) EPLA, 2013</description>
</descriptions>
</resource>
| Görüntülenme | 32 |
| İndirme | 8 |
| Veri hacmi | 1.1 kB |
| Tekil görüntülenme | 30 |
| Tekil indirme | 8 |