Dergi makalesi Açık Erişim

Generalized Huberman-Rudnick scaling law and robustness of q-Gaussian probability distributions

Afsar, Ozgur; Tirnakli, Ugur


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/13007</identifier>
  <creators>
    <creator>
      <creatorName>Afsar, Ozgur</creatorName>
      <givenName>Ozgur</givenName>
      <familyName>Afsar</familyName>
      <affiliation>Ege Univ, Fac Sci, Dept Phys, TR-35100 Izmir, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Tirnakli, Ugur</creatorName>
      <givenName>Ugur</givenName>
      <familyName>Tirnakli</familyName>
    </creator>
  </creators>
  <titles>
    <title>Generalized Huberman-Rudnick Scaling Law And Robustness Of Q-Gaussian Probability Distributions</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2013</publicationYear>
  <dates>
    <date dateType="Issued">2013-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/13007</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1209/0295-5075/101/20003</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">We generalize Huberman-Rudnick universal scaling law for all periodic windows of the logistic map and show the robustness of q-Gaussian probability distributions in the vicinity of chaos threshold. Our scaling relation is universal for the self-similar windows of the map which exhibit period-doubling subharmonic bifurcations. Using this generalized scaling argument, for all periodic windows, as chaos threshold is approached, a developing convergence to q-Gaussian is numerically obtained both in the central regions and tails of the probability distributions of sums of iterates. Copyright (C) EPLA, 2013</description>
  </descriptions>
</resource>
21
5
görüntülenme
indirilme
Görüntülenme 21
İndirme 5
Veri hacmi 710 Bytes
Tekil görüntülenme 20
Tekil indirme 5

Alıntı yap