Dergi makalesi Açık Erişim

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

Abi, B.; Acciarri, R.; Acero, M. A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S. Alonso; Alt, C.; Anderson, J.; Andreopoulos, C.; Andrews, M. P.; Andrianala, F.; Andringa, S.; Ankowski, A.; Antonova, M.; Antusch, S.; Aranda-Fernandez, A.; Aranda-Fernandez, A.


JSON

{
  "conceptrecid": "11542", 
  "created": "2021-03-15T07:41:33.483359+00:00", 
  "doi": "10.1103/PhysRevD.102.092003", 
  "files": [
    {
      "bucket": "959035bf-550d-49dc-863b-33b0c5cb193d", 
      "checksum": "md5:e3ffe4883dd229945be74d300f3d230e", 
      "key": "bib-3139d2bb-7b87-43cc-9300-eb028d241dff.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/959035bf-550d-49dc-863b-33b0c5cb193d/bib-3139d2bb-7b87-43cc-9300-eb028d241dff.txt"
      }, 
      "size": 398, 
      "type": "txt"
    }
  ], 
  "id": 11543, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1103/PhysRevD.102.092003.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/959035bf-550d-49dc-863b-33b0c5cb193d", 
    "doi": "https://doi.org/10.1103/PhysRevD.102.092003", 
    "html": "https://aperta.ulakbim.gov.tr/record/11543", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/11543", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/11543"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-destekli-proje-yayinlari"
      }
    ], 
    "creators": [
      {
        "affiliation": "Univ Oxford, Oxford OX1 3RH, England", 
        "name": "Abi, B."
      }, 
      {
        "affiliation": "Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA", 
        "name": "Acciarri, R."
      }, 
      {
        "affiliation": "Univ Atlantico, Atlantico, Colombia", 
        "name": "Acero, M. A."
      }, 
      {
        "affiliation": "Georgian Tech Univ, Tbilisi, Georgia", 
        "name": "Adamov, G."
      }, 
      {
        "affiliation": "Brookhaven Natl Lab, Upton, NY 11973 USA", 
        "name": "Adams, D."
      }, 
      {
        "affiliation": "Univ Bristol, Bristol BS8 1TL, Avon, England", 
        "name": "Adinolfi, M."
      }, 
      {
        "affiliation": "Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India", 
        "name": "Ahmad, Z."
      }, 
      {
        "affiliation": "Univ Warwick, Coventry CV4 7AL, W Midlands, England", 
        "name": "Ahmed, J."
      }, 
      {
        "affiliation": "Univ Sussex, Brighton BN1 9RH, E Sussex, England", 
        "name": "Alion, T."
      }, 
      {
        "affiliation": "CERN, European Org Nucl Res, CH-1211 Meyrin, Switzerland", 
        "name": "Monsalve, S. Alonso"
      }, 
      {
        "name": "Alt, C."
      }, 
      {
        "name": "Anderson, J."
      }, 
      {
        "name": "Andreopoulos, C."
      }, 
      {
        "affiliation": "Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA", 
        "name": "Andrews, M. P."
      }, 
      {
        "affiliation": "Univ Antananarivo, Antananarivo 101, Madagascar", 
        "name": "Andrianala, F."
      }, 
      {
        "name": "Andringa, S."
      }, 
      {
        "affiliation": "SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA", 
        "name": "Ankowski, A."
      }, 
      {
        "affiliation": "Inst Fis Corpuscular, Valencia 46980, Spain", 
        "name": "Antonova, M."
      }, 
      {
        "affiliation": "Univ Basel, CH-4056 Basel, Switzerland", 
        "name": "Antusch, S."
      }, 
      {
        "affiliation": "Univ Colima, Colima, Mexico", 
        "name": "Aranda-Fernandez, A."
      }, 
      {
        "affiliation": "Univ Colima, Colima, Mexico", 
        "name": "Aranda-Fernandez, A."
      }
    ], 
    "description": "The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.", 
    "doi": "10.1103/PhysRevD.102.092003", 
    "has_grant": false, 
    "journal": {
      "issue": "9", 
      "title": "PHYSICAL REVIEW D", 
      "volume": "102"
    }, 
    "license": {
      "id": "cc-by"
    }, 
    "publication_date": "2020-01-01", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "11543"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "11542"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "article", 
      "title": "Dergi makalesi", 
      "type": "publication"
    }, 
    "title": "Neutrino interaction classification with a convolutional neural network in the DUNE far detector"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 8.0, 
    "unique_downloads": 8.0, 
    "unique_views": 45.0, 
    "version_downloads": 8.0, 
    "version_unique_downloads": 8.0, 
    "version_unique_views": 45.0, 
    "version_views": 47.0, 
    "version_volume": 3184.0, 
    "views": 47.0, 
    "volume": 3184.0
  }, 
  "updated": "2021-03-15T07:41:33.526350+00:00"
}
47
8
görüntülenme
indirilme
Görüntülenme 47
İndirme 8
Veri hacmi 3.2 kB
Tekil görüntülenme 45
Tekil indirme 8

Alıntı yap