Dergi makalesi Açık Erişim
Abi, B.; Acciarri, R.; Acero, M. A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S. Alonso; Alt, C.; Anderson, J.; Andreopoulos, C.; Andrews, M. P.; Andrianala, F.; Andringa, S.; Ankowski, A.; Antonova, M.; Antusch, S.; Aranda-Fernandez, A.; Aranda-Fernandez, A.
{
"conceptrecid": "11542",
"created": "2021-03-15T07:41:33.483359+00:00",
"doi": "10.1103/PhysRevD.102.092003",
"files": [
{
"bucket": "959035bf-550d-49dc-863b-33b0c5cb193d",
"checksum": "md5:e3ffe4883dd229945be74d300f3d230e",
"key": "bib-3139d2bb-7b87-43cc-9300-eb028d241dff.txt",
"links": {
"self": "https://aperta.ulakbim.gov.tr/api/files/959035bf-550d-49dc-863b-33b0c5cb193d/bib-3139d2bb-7b87-43cc-9300-eb028d241dff.txt"
},
"size": 398,
"type": "txt"
}
],
"id": 11543,
"links": {
"badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1103/PhysRevD.102.092003.svg",
"bucket": "https://aperta.ulakbim.gov.tr/api/files/959035bf-550d-49dc-863b-33b0c5cb193d",
"doi": "https://doi.org/10.1103/PhysRevD.102.092003",
"html": "https://aperta.ulakbim.gov.tr/record/11543",
"latest": "https://aperta.ulakbim.gov.tr/api/records/11543",
"latest_html": "https://aperta.ulakbim.gov.tr/record/11543"
},
"metadata": {
"access_right": "open",
"access_right_category": "success",
"communities": [
{
"id": "tubitak-destekli-proje-yayinlari"
}
],
"creators": [
{
"affiliation": "Univ Oxford, Oxford OX1 3RH, England",
"name": "Abi, B."
},
{
"affiliation": "Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA",
"name": "Acciarri, R."
},
{
"affiliation": "Univ Atlantico, Atlantico, Colombia",
"name": "Acero, M. A."
},
{
"affiliation": "Georgian Tech Univ, Tbilisi, Georgia",
"name": "Adamov, G."
},
{
"affiliation": "Brookhaven Natl Lab, Upton, NY 11973 USA",
"name": "Adams, D."
},
{
"affiliation": "Univ Bristol, Bristol BS8 1TL, Avon, England",
"name": "Adinolfi, M."
},
{
"affiliation": "Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India",
"name": "Ahmad, Z."
},
{
"affiliation": "Univ Warwick, Coventry CV4 7AL, W Midlands, England",
"name": "Ahmed, J."
},
{
"affiliation": "Univ Sussex, Brighton BN1 9RH, E Sussex, England",
"name": "Alion, T."
},
{
"affiliation": "CERN, European Org Nucl Res, CH-1211 Meyrin, Switzerland",
"name": "Monsalve, S. Alonso"
},
{
"name": "Alt, C."
},
{
"name": "Anderson, J."
},
{
"name": "Andreopoulos, C."
},
{
"affiliation": "Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA",
"name": "Andrews, M. P."
},
{
"affiliation": "Univ Antananarivo, Antananarivo 101, Madagascar",
"name": "Andrianala, F."
},
{
"name": "Andringa, S."
},
{
"affiliation": "SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA",
"name": "Ankowski, A."
},
{
"affiliation": "Inst Fis Corpuscular, Valencia 46980, Spain",
"name": "Antonova, M."
},
{
"affiliation": "Univ Basel, CH-4056 Basel, Switzerland",
"name": "Antusch, S."
},
{
"affiliation": "Univ Colima, Colima, Mexico",
"name": "Aranda-Fernandez, A."
},
{
"affiliation": "Univ Colima, Colima, Mexico",
"name": "Aranda-Fernandez, A."
}
],
"description": "The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.",
"doi": "10.1103/PhysRevD.102.092003",
"has_grant": false,
"journal": {
"issue": "9",
"title": "PHYSICAL REVIEW D",
"volume": "102"
},
"license": {
"id": "cc-by"
},
"publication_date": "2020-01-01",
"relations": {
"version": [
{
"count": 1,
"index": 0,
"is_last": true,
"last_child": {
"pid_type": "recid",
"pid_value": "11543"
},
"parent": {
"pid_type": "recid",
"pid_value": "11542"
}
}
]
},
"resource_type": {
"subtype": "article",
"title": "Dergi makalesi",
"type": "publication"
},
"title": "Neutrino interaction classification with a convolutional neural network in the DUNE far detector"
},
"owners": [
1
],
"revision": 1,
"stats": {
"downloads": 8.0,
"unique_downloads": 8.0,
"unique_views": 45.0,
"version_downloads": 8.0,
"version_unique_downloads": 8.0,
"version_unique_views": 45.0,
"version_views": 47.0,
"version_volume": 3184.0,
"views": 47.0,
"volume": 3184.0
},
"updated": "2021-03-15T07:41:33.526350+00:00"
}
| Görüntülenme | 47 |
| İndirme | 8 |
| Veri hacmi | 3.2 kB |
| Tekil görüntülenme | 45 |
| Tekil indirme | 8 |