Dergi makalesi Açık Erişim

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

Abi, B.; Acciarri, R.; Acero, M. A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S. Alonso; Alt, C.; Anderson, J.; Andreopoulos, C.; Andrews, M. P.; Andrianala, F.; Andringa, S.; Ankowski, A.; Antonova, M.; Antusch, S.; Aranda-Fernandez, A.; Aranda-Fernandez, A.


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/11543</identifier>
  <creators>
    <creator>
      <creatorName>Abi, B.</creatorName>
      <givenName>B.</givenName>
      <familyName>Abi</familyName>
      <affiliation>Univ Oxford, Oxford OX1 3RH, England</affiliation>
    </creator>
    <creator>
      <creatorName>Acciarri, R.</creatorName>
      <givenName>R.</givenName>
      <familyName>Acciarri</familyName>
      <affiliation>Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA</affiliation>
    </creator>
    <creator>
      <creatorName>Acero, M. A.</creatorName>
      <givenName>M. A.</givenName>
      <familyName>Acero</familyName>
      <affiliation>Univ Atlantico, Atlantico, Colombia</affiliation>
    </creator>
    <creator>
      <creatorName>Adamov, G.</creatorName>
      <givenName>G.</givenName>
      <familyName>Adamov</familyName>
      <affiliation>Georgian Tech Univ, Tbilisi, Georgia</affiliation>
    </creator>
    <creator>
      <creatorName>Adams, D.</creatorName>
      <givenName>D.</givenName>
      <familyName>Adams</familyName>
      <affiliation>Brookhaven Natl Lab, Upton, NY 11973 USA</affiliation>
    </creator>
    <creator>
      <creatorName>Adinolfi, M.</creatorName>
      <givenName>M.</givenName>
      <familyName>Adinolfi</familyName>
      <affiliation>Univ Bristol, Bristol BS8 1TL, Avon, England</affiliation>
    </creator>
    <creator>
      <creatorName>Ahmad, Z.</creatorName>
      <givenName>Z.</givenName>
      <familyName>Ahmad</familyName>
      <affiliation>Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India</affiliation>
    </creator>
    <creator>
      <creatorName>Ahmed, J.</creatorName>
      <givenName>J.</givenName>
      <familyName>Ahmed</familyName>
      <affiliation>Univ Warwick, Coventry CV4 7AL, W Midlands, England</affiliation>
    </creator>
    <creator>
      <creatorName>Alion, T.</creatorName>
      <givenName>T.</givenName>
      <familyName>Alion</familyName>
      <affiliation>Univ Sussex, Brighton BN1 9RH, E Sussex, England</affiliation>
    </creator>
    <creator>
      <creatorName>Monsalve, S. Alonso</creatorName>
      <givenName>S. Alonso</givenName>
      <familyName>Monsalve</familyName>
      <affiliation>CERN, European Org Nucl Res, CH-1211 Meyrin, Switzerland</affiliation>
    </creator>
    <creator>
      <creatorName>Alt, C.</creatorName>
      <givenName>C.</givenName>
      <familyName>Alt</familyName>
    </creator>
    <creator>
      <creatorName>Anderson, J.</creatorName>
      <givenName>J.</givenName>
      <familyName>Anderson</familyName>
    </creator>
    <creator>
      <creatorName>Andreopoulos, C.</creatorName>
      <givenName>C.</givenName>
      <familyName>Andreopoulos</familyName>
    </creator>
    <creator>
      <creatorName>Andrews, M. P.</creatorName>
      <givenName>M. P.</givenName>
      <familyName>Andrews</familyName>
      <affiliation>Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA</affiliation>
    </creator>
    <creator>
      <creatorName>Andrianala, F.</creatorName>
      <givenName>F.</givenName>
      <familyName>Andrianala</familyName>
      <affiliation>Univ Antananarivo, Antananarivo 101, Madagascar</affiliation>
    </creator>
    <creator>
      <creatorName>Andringa, S.</creatorName>
      <givenName>S.</givenName>
      <familyName>Andringa</familyName>
    </creator>
    <creator>
      <creatorName>Ankowski, A.</creatorName>
      <givenName>A.</givenName>
      <familyName>Ankowski</familyName>
      <affiliation>SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA</affiliation>
    </creator>
    <creator>
      <creatorName>Antonova, M.</creatorName>
      <givenName>M.</givenName>
      <familyName>Antonova</familyName>
      <affiliation>Inst Fis Corpuscular, Valencia 46980, Spain</affiliation>
    </creator>
    <creator>
      <creatorName>Antusch, S.</creatorName>
      <givenName>S.</givenName>
      <familyName>Antusch</familyName>
      <affiliation>Univ Basel, CH-4056 Basel, Switzerland</affiliation>
    </creator>
    <creator>
      <creatorName>Aranda-Fernandez, A.</creatorName>
      <givenName>A.</givenName>
      <familyName>Aranda-Fernandez</familyName>
      <affiliation>Univ Colima, Colima, Mexico</affiliation>
    </creator>
    <creator>
      <creatorName>Aranda-Fernandez, A.</creatorName>
      <givenName>A.</givenName>
      <familyName>Aranda-Fernandez</familyName>
      <affiliation>Univ Colima, Colima, Mexico</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Neutrino Interaction Classification With A Convolutional Neural Network In The Dune Far Detector</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/11543</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1103/PhysRevD.102.092003</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.</description>
  </descriptions>
</resource>
47
8
görüntülenme
indirilme
Görüntülenme 47
İndirme 8
Veri hacmi 3.2 kB
Tekil görüntülenme 45
Tekil indirme 8

Alıntı yap