Dergi makalesi Açık Erişim
Abi, B.; Acciarri, R.; Acero, M. A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S. Alonso; Alt, C.; Anderson, J.; Andreopoulos, C.; Andrews, M. P.; Andrianala, F.; Andringa, S.; Ankowski, A.; Antonova, M.; Antusch, S.; Aranda-Fernandez, A.; Aranda-Fernandez, A.
{
"DOI": "10.1103/PhysRevD.102.092003",
"abstract": "The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.",
"author": [
{
"family": "Abi",
"given": " B."
},
{
"family": "Acciarri",
"given": " R."
},
{
"family": "Acero",
"given": " M. A."
},
{
"family": "Adamov",
"given": " G."
},
{
"family": "Adams",
"given": " D."
},
{
"family": "Adinolfi",
"given": " M."
},
{
"family": "Ahmad",
"given": " Z."
},
{
"family": "Ahmed",
"given": " J."
},
{
"family": "Alion",
"given": " T."
},
{
"family": "Monsalve",
"given": " S. Alonso"
},
{
"family": "Alt",
"given": " C."
},
{
"family": "Anderson",
"given": " J."
},
{
"family": "Andreopoulos",
"given": " C."
},
{
"family": "Andrews",
"given": " M. P."
},
{
"family": "Andrianala",
"given": " F."
},
{
"family": "Andringa",
"given": " S."
},
{
"family": "Ankowski",
"given": " A."
},
{
"family": "Antonova",
"given": " M."
},
{
"family": "Antusch",
"given": " S."
},
{
"family": "Aranda-Fernandez",
"given": " A."
},
{
"family": "Aranda-Fernandez",
"given": " A."
}
],
"container_title": "PHYSICAL REVIEW D",
"id": "11543",
"issue": "9",
"issued": {
"date-parts": [
[
2020,
1,
1
]
]
},
"title": "Neutrino interaction classification with a convolutional neural network in the DUNE far detector",
"type": "article-journal",
"volume": "102"
}
| Görüntülenme | 47 |
| İndirme | 8 |
| Veri hacmi | 3.2 kB |
| Tekil görüntülenme | 45 |
| Tekil indirme | 8 |