Dergi makalesi Açık Erişim

Generalized *-Lieideal of *-primering

Turkmen, Selin; Aydin, Neset


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Generalized *-Lieideal of *-primering</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">TURKISH JOURNAL OF MATHEMATICS</subfield>
    <subfield code="v">41</subfield>
    <subfield code="n">4</subfield>
    <subfield code="c">841-853</subfield>
  </datafield>
  <controlfield tag="001">111236</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Let R be a *-prime ring with characteristic not 2, sigma,tau : R -&amp;gt; R be two automorphisms, U be a nonzero *-(sigma, tau)-Lie ideal of R such that tau commutes with *, and a,b be in R. (i) If a is an element of S*(R) and [U, a] - 0, then a is an element of Z (R) or U subset of Z (R) : (ii) If a is an element of S* ( R) and [U,a](sigma),(tau) subset of C-sigma,C-tau, then a is an element of Z (R) or U subset of Z (R). (iii) If U not subset of Z (R) and U not subset of C-sigma,C-tau, then there exists a nonzero *-ideal M of R such that [R, M](sigma, tau) subset of U but [R, M](sigma,tau) not subset of C-sigma,C-tau . (iv) Let U not subset of Z (R) and U not subset of C-sigma,C-tau . If aUb = a*U b = 0, then a = 0 or b = 0 :</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</subfield>
    <subfield code="a">Aydin, Neset</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">article</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</subfield>
    <subfield code="a">Turkmen, Selin</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-01-01</subfield>
  </datafield>
  <controlfield tag="005">20210420141805.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:111236</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:34c0f6b5b87c4667e3cd85e5d7b2aebc</subfield>
    <subfield code="s">111326</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/111236/files/10-3906-mat-1408-52.pdf</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.3906/mat-1408-52</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
9
4
görüntülenme
indirilme
Görüntülenme 9
İndirme 4
Veri hacmi 445.3 kB
Tekil görüntülenme 9
Tekil indirme 4

Alıntı yap