Dergi makalesi Açık Erişim
Turkmen, Selin; Aydin, Neset
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/111236</identifier>
<creators>
<creator>
<creatorName>Turkmen, Selin</creatorName>
<givenName>Selin</givenName>
<familyName>Turkmen</familyName>
<affiliation>Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</affiliation>
</creator>
<creator>
<creatorName>Aydin, Neset</creatorName>
<givenName>Neset</givenName>
<familyName>Aydin</familyName>
<affiliation>Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Generalized *-Lieideal Of *-Primering</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2017</publicationYear>
<dates>
<date dateType="Issued">2017-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/111236</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3906/mat-1408-52</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Let R be a *-prime ring with characteristic not 2, sigma,tau : R -&gt; R be two automorphisms, U be a nonzero *-(sigma, tau)-Lie ideal of R such that tau commutes with *, and a,b be in R. (i) If a is an element of S*(R) and [U, a] - 0, then a is an element of Z (R) or U subset of Z (R) : (ii) If a is an element of S* ( R) and [U,a](sigma),(tau) subset of C-sigma,C-tau, then a is an element of Z (R) or U subset of Z (R). (iii) If U not subset of Z (R) and U not subset of C-sigma,C-tau, then there exists a nonzero *-ideal M of R such that [R, M](sigma, tau) subset of U but [R, M](sigma,tau) not subset of C-sigma,C-tau . (iv) Let U not subset of Z (R) and U not subset of C-sigma,C-tau . If aUb = a*U b = 0, then a = 0 or b = 0 :</description>
</descriptions>
</resource>
| Görüntülenme | 27 |
| İndirme | 6 |
| Veri hacmi | 668.0 kB |
| Tekil görüntülenme | 23 |
| Tekil indirme | 6 |