Dergi makalesi Açık Erişim

Generalized *-Lieideal of *-primering

Turkmen, Selin; Aydin, Neset


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/111236</identifier>
  <creators>
    <creator>
      <creatorName>Turkmen, Selin</creatorName>
      <givenName>Selin</givenName>
      <familyName>Turkmen</familyName>
      <affiliation>Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Aydin, Neset</creatorName>
      <givenName>Neset</givenName>
      <familyName>Aydin</familyName>
      <affiliation>Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Generalized *-Lieideal Of *-Primering</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2017</publicationYear>
  <dates>
    <date dateType="Issued">2017-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/111236</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3906/mat-1408-52</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Let R be a *-prime ring with characteristic not 2, sigma,tau : R -&amp;gt; R be two automorphisms, U be a nonzero *-(sigma, tau)-Lie ideal of R such that tau commutes with *, and a,b be in R. (i) If a is an element of S*(R) and [U, a] - 0, then a is an element of Z (R) or U subset of Z (R) : (ii) If a is an element of S* ( R) and [U,a](sigma),(tau) subset of C-sigma,C-tau, then a is an element of Z (R) or U subset of Z (R). (iii) If U not subset of Z (R) and U not subset of C-sigma,C-tau, then there exists a nonzero *-ideal M of R such that [R, M](sigma, tau) subset of U but [R, M](sigma,tau) not subset of C-sigma,C-tau . (iv) Let U not subset of Z (R) and U not subset of C-sigma,C-tau . If aUb = a*U b = 0, then a = 0 or b = 0 :</description>
  </descriptions>
</resource>
9
4
görüntülenme
indirilme
Görüntülenme 9
İndirme 4
Veri hacmi 445.3 kB
Tekil görüntülenme 9
Tekil indirme 4

Alıntı yap