Dergi makalesi Açık Erişim
Turkmen, Selin; Aydin, Neset
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/111236</identifier> <creators> <creator> <creatorName>Turkmen, Selin</creatorName> <givenName>Selin</givenName> <familyName>Turkmen</familyName> <affiliation>Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</affiliation> </creator> <creator> <creatorName>Aydin, Neset</creatorName> <givenName>Neset</givenName> <familyName>Aydin</familyName> <affiliation>Canakkale Onsekiz Mart Univ, Dept Math, Canakkale, Turkey</affiliation> </creator> </creators> <titles> <title>Generalized *-Lieideal Of *-Primering</title> </titles> <publisher>Aperta</publisher> <publicationYear>2017</publicationYear> <dates> <date dateType="Issued">2017-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/111236</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3906/mat-1408-52</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Let R be a *-prime ring with characteristic not 2, sigma,tau : R -&gt; R be two automorphisms, U be a nonzero *-(sigma, tau)-Lie ideal of R such that tau commutes with *, and a,b be in R. (i) If a is an element of S*(R) and [U, a] - 0, then a is an element of Z (R) or U subset of Z (R) : (ii) If a is an element of S* ( R) and [U,a](sigma),(tau) subset of C-sigma,C-tau, then a is an element of Z (R) or U subset of Z (R). (iii) If U not subset of Z (R) and U not subset of C-sigma,C-tau, then there exists a nonzero *-ideal M of R such that [R, M](sigma, tau) subset of U but [R, M](sigma,tau) not subset of C-sigma,C-tau . (iv) Let U not subset of Z (R) and U not subset of C-sigma,C-tau . If aUb = a*U b = 0, then a = 0 or b = 0 :</description> </descriptions> </resource>
Görüntülenme | 9 |
İndirme | 4 |
Veri hacmi | 445.3 kB |
Tekil görüntülenme | 9 |
Tekil indirme | 4 |