Dergi makalesi Açık Erişim

Generalized *-Lieideal of *-primering

Turkmen, Selin; Aydin, Neset


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Turkmen, Selin</dc:creator>
  <dc:creator>Aydin, Neset</dc:creator>
  <dc:date>2017-01-01</dc:date>
  <dc:description>Let R be a *-prime ring with characteristic not 2, sigma,tau : R -&gt; R be two automorphisms, U be a nonzero *-(sigma, tau)-Lie ideal of R such that tau commutes with *, and a,b be in R. (i) If a is an element of S*(R) and [U, a] - 0, then a is an element of Z (R) or U subset of Z (R) : (ii) If a is an element of S* ( R) and [U,a](sigma),(tau) subset of C-sigma,C-tau, then a is an element of Z (R) or U subset of Z (R). (iii) If U not subset of Z (R) and U not subset of C-sigma,C-tau, then there exists a nonzero *-ideal M of R such that [R, M](sigma, tau) subset of U but [R, M](sigma,tau) not subset of C-sigma,C-tau . (iv) Let U not subset of Z (R) and U not subset of C-sigma,C-tau . If aUb = a*U b = 0, then a = 0 or b = 0 :</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/111236</dc:identifier>
  <dc:identifier>oai:zenodo.org:111236</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>TURKISH JOURNAL OF MATHEMATICS 41(4) 841-853</dc:source>
  <dc:title>Generalized *-Lieideal of *-primering</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
9
4
görüntülenme
indirilme
Görüntülenme 9
İndirme 4
Veri hacmi 445.3 kB
Tekil görüntülenme 9
Tekil indirme 4

Alıntı yap