Dergi makalesi Açık Erişim
Gheondea, Aurelian; Ugurcan, Baris Evren
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Gheondea, Aurelian</dc:creator> <dc:creator>Ugurcan, Baris Evren</dc:creator> <dc:date>2012-01-01</dc:date> <dc:description>We prove that a generalized version, essentially obtained by R.M. Loynes, of the B. Sz.-Nagy's Dilation Theorem for -valued (here is a VH-space in the sense of Loynes) positive semidefinite maps on *-semigroups is equivalent with a generalized version of the W.F. Stinespring's Dilation Theorem for -valued completely positive linear maps on B (*)-algebras. This equivalence result is a generalization of a theorem of F.H. Szafraniec, originally proved for the case of operator valued maps (that is, when is a Hilbert space).</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/83727</dc:identifier> <dc:identifier>oai:zenodo.org:83727</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>COMPLEX ANALYSIS AND OPERATOR THEORY 6(3) 625-650</dc:source> <dc:title>On Two Equivalent Dilation Theorems in VH-Spaces</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
| Görüntülenme | 52 |
| İndirme | 8 |
| Veri hacmi | 1.1 kB |
| Tekil görüntülenme | 49 |
| Tekil indirme | 8 |