Dergi makalesi Açık Erişim

On Two Equivalent Dilation Theorems in VH-Spaces

Gheondea, Aurelian; Ugurcan, Baris Evren


JSON-LD (schema.org)

{
  "@context": "https://schema.org/", 
  "@id": 83727, 
  "@type": "ScholarlyArticle", 
  "creator": [
    {
      "@type": "Person", 
      "name": "Gheondea, Aurelian"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey", 
      "name": "Ugurcan, Baris Evren"
    }
  ], 
  "datePublished": "2012-01-01", 
  "description": "We prove that a generalized version, essentially obtained by R.M. Loynes, of the B. Sz.-Nagy's Dilation Theorem for -valued (here is a VH-space in the sense of Loynes) positive semidefinite maps on *-semigroups is equivalent with a generalized version of the W.F. Stinespring's Dilation Theorem for -valued completely positive linear maps on B (*)-algebras. This equivalence result is a generalization of a theorem of F.H. Szafraniec, originally proved for the case of operator valued maps (that is, when is a Hilbert space).", 
  "headline": "On Two Equivalent Dilation Theorems in VH-Spaces", 
  "identifier": 83727, 
  "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", 
  "license": "http://www.opendefinition.org/licenses/cc-by", 
  "name": "On Two Equivalent Dilation Theorems in VH-Spaces", 
  "url": "https://aperta.ulakbim.gov.tr/record/83727"
}
52
8
görüntülenme
indirilme
Görüntülenme 52
İndirme 8
Veri hacmi 1.1 kB
Tekil görüntülenme 49
Tekil indirme 8

Alıntı yap