Dergi makalesi Açık Erişim

ON RINGS WHERE LEFT PRINCIPAL IDEALS ARE LEFT PRINCIPAL ANNIHILATORS

Camillo, V.; Nicholson, W. K.


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
    <subfield code="o">oai:zenodo.org:78537</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">The rings in the title are studied and related to right principally injective rings. Many properties of these rings (called left pseudo-morphic by Yang) are derived, and conditions are given that an endomorphism ring is left pseudo-morphic. Some particular results: (1) Commutative pseudo-morphic rings are morphic; (2) Semiprime left pseudo-morphic rings are semisimple; and (3) A left and right pseudo-morphic ring satisfying (equivalent) mild finiteness conditions is a morphic, quasi-Frobenius ring in which every one-sided ideal is principal. Call a left ideal L a left principal annihilator if L = 1(a) = {r is an element of R vertical bar ra = 0} for some a is an element of R. It is shown that if R is left pseudo-morphic, left mininjective ring with the ACC on left principal annihilators then R is a quasi-Frobenius ring in which every right ideal is principal and every left ideal is a left principal annihilator.</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Creative Commons Attribution</subfield>
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.81043/aperta.78536</subfield>
    <subfield code="n">doi</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Camillo, V.</subfield>
    <subfield code="u">Univ Iowa, Dept Math, Iowa City, IA 52242 USA</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:1a463a97aa953aa5cd28295333e7d55c</subfield>
    <subfield code="s">169</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/78537/files/bib-ac497a00-c055-4d26-b0fe-a1478d014ae8.txt</subfield>
  </datafield>
  <controlfield tag="005">20210316050800.0</controlfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2015-01-01</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.81043/aperta.78537</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">ON RINGS WHERE LEFT PRINCIPAL IDEALS ARE LEFT PRINCIPAL ANNIHILATORS</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="v">17</subfield>
    <subfield code="c">199-214</subfield>
    <subfield code="p">INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Nicholson, W. K.</subfield>
    <subfield code="u">Univ Calgary, Dept Math, Calgary, AB T2N 1N4, Canada</subfield>
  </datafield>
  <controlfield tag="001">78537</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
</record>
58
10
görüntülenme
indirilme
Görüntülenme 58
İndirme 10
Veri hacmi 1.7 kB
Tekil görüntülenme 50
Tekil indirme 10

Alıntı yap