Dergi makalesi Açık Erişim
Camillo, V.; Nicholson, W. K.
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
<subfield code="o">oai:zenodo.org:78537</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The rings in the title are studied and related to right principally injective rings. Many properties of these rings (called left pseudo-morphic by Yang) are derived, and conditions are given that an endomorphism ring is left pseudo-morphic. Some particular results: (1) Commutative pseudo-morphic rings are morphic; (2) Semiprime left pseudo-morphic rings are semisimple; and (3) A left and right pseudo-morphic ring satisfying (equivalent) mild finiteness conditions is a morphic, quasi-Frobenius ring in which every one-sided ideal is principal. Call a left ideal L a left principal annihilator if L = 1(a) = {r is an element of R vertical bar ra = 0} for some a is an element of R. It is shown that if R is left pseudo-morphic, left mininjective ring with the ACC on left principal annihilators then R is a quasi-Frobenius ring in which every right ideal is principal and every left ideal is a left principal annihilator.</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">article</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="i">isVersionOf</subfield>
<subfield code="a">10.81043/aperta.78536</subfield>
<subfield code="n">doi</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Camillo, V.</subfield>
<subfield code="u">Univ Iowa, Dept Math, Iowa City, IA 52242 USA</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:1a463a97aa953aa5cd28295333e7d55c</subfield>
<subfield code="s">169</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/78537/files/bib-ac497a00-c055-4d26-b0fe-a1478d014ae8.txt</subfield>
</datafield>
<controlfield tag="005">20210316050800.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2015-01-01</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.81043/aperta.78537</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">ON RINGS WHERE LEFT PRINCIPAL IDEALS ARE LEFT PRINCIPAL ANNIHILATORS</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="4">
<subfield code="v">17</subfield>
<subfield code="c">199-214</subfield>
<subfield code="p">INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Nicholson, W. K.</subfield>
<subfield code="u">Univ Calgary, Dept Math, Calgary, AB T2N 1N4, Canada</subfield>
</datafield>
<controlfield tag="001">78537</controlfield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
</datafield>
</record>
| Görüntülenme | 58 |
| İndirme | 10 |
| Veri hacmi | 1.7 kB |
| Tekil görüntülenme | 50 |
| Tekil indirme | 10 |