Dergi makalesi Açık Erişim
Camillo, V.; Nicholson, W. K.
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/78537</identifier>
<creators>
<creator>
<creatorName>Camillo, V.</creatorName>
<givenName>V.</givenName>
<familyName>Camillo</familyName>
<affiliation>Univ Iowa, Dept Math, Iowa City, IA 52242 USA</affiliation>
</creator>
<creator>
<creatorName>Nicholson, W. K.</creatorName>
<givenName>W. K.</givenName>
<familyName>Nicholson</familyName>
<affiliation>Univ Calgary, Dept Math, Calgary, AB T2N 1N4, Canada</affiliation>
</creator>
</creators>
<titles>
<title>On Rings Where Left Principal Ideals Are Left Principal Annihilators</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2015</publicationYear>
<dates>
<date dateType="Issued">2015-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/78537</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.78536</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.78537</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">The rings in the title are studied and related to right principally injective rings. Many properties of these rings (called left pseudo-morphic by Yang) are derived, and conditions are given that an endomorphism ring is left pseudo-morphic. Some particular results: (1) Commutative pseudo-morphic rings are morphic; (2) Semiprime left pseudo-morphic rings are semisimple; and (3) A left and right pseudo-morphic ring satisfying (equivalent) mild finiteness conditions is a morphic, quasi-Frobenius ring in which every one-sided ideal is principal. Call a left ideal L a left principal annihilator if L = 1(a) = {r is an element of R vertical bar ra = 0} for some a is an element of R. It is shown that if R is left pseudo-morphic, left mininjective ring with the ACC on left principal annihilators then R is a quasi-Frobenius ring in which every right ideal is principal and every left ideal is a left principal annihilator.</description>
</descriptions>
</resource>
| Görüntülenme | 58 |
| İndirme | 10 |
| Veri hacmi | 1.7 kB |
| Tekil görüntülenme | 50 |
| Tekil indirme | 10 |