Dergi makalesi Açık Erişim
Uyanik, Elif; Yurdakul, Murat Hayrettin
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Uyanik, Elif</dc:creator> <dc:creator>Yurdakul, Murat Hayrettin</dc:creator> <dc:date>2019-01-01</dc:date> <dc:description>For a scalar sequence (theta(n))(n is an element of N), let C be the matrix defined by c(n)(k) = theta(n-k+1) if n >= k, c(n)(k) = 0 if n < k. The map between Kothe spaces lambda(A) and lambda(B) is called a Cauchy Product map if it is determined by the triangular matrix C. In this note we introduced some necessary and sufficient conditions for a Cauchy Product map on a nuclear Kothe space lambda(A) to nuclear G(1) - space lambda(B) to be linear and continuous. Its transpose is also considered.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/75435</dc:identifier> <dc:identifier>oai:zenodo.org:75435</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>OPERATORS AND MATRICES 13(2) 343-347</dc:source> <dc:title>A NOTE ON TRIANGULAR OPERATORS ON SMOOTH SEQUENCE SPACES</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
Görüntülenme | 25 |
İndirme | 6 |
Veri hacmi | 786 Bytes |
Tekil görüntülenme | 23 |
Tekil indirme | 6 |