Dergi makalesi Açık Erişim
Uyanik, Elif; Yurdakul, Murat Hayrettin
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/75435</identifier> <creators> <creator> <creatorName>Uyanik, Elif</creatorName> <givenName>Elif</givenName> <familyName>Uyanik</familyName> <affiliation>Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Yurdakul, Murat Hayrettin</creatorName> <givenName>Murat Hayrettin</givenName> <familyName>Yurdakul</familyName> <affiliation>Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey</affiliation> </creator> </creators> <titles> <title>A Note On Triangular Operators On Smooth Sequence Spaces</title> </titles> <publisher>Aperta</publisher> <publicationYear>2019</publicationYear> <dates> <date dateType="Issued">2019-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/75435</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.7153/oam-2019-13-24</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">For a scalar sequence (theta(n))(n is an element of N), let C be the matrix defined by c(n)(k) = theta(n-k+1) if n &gt;= k, c(n)(k) = 0 if n &lt; k. The map between Kothe spaces lambda(A) and lambda(B) is called a Cauchy Product map if it is determined by the triangular matrix C. In this note we introduced some necessary and sufficient conditions for a Cauchy Product map on a nuclear Kothe space lambda(A) to nuclear G(1) - space lambda(B) to be linear and continuous. Its transpose is also considered.</description> </descriptions> </resource>
Görüntülenme | 25 |
İndirme | 6 |
Veri hacmi | 786 Bytes |
Tekil görüntülenme | 23 |
Tekil indirme | 6 |