Dergi makalesi Açık Erişim

A NOTE ON TRIANGULAR OPERATORS ON SMOOTH SEQUENCE SPACES

Uyanik, Elif; Yurdakul, Murat Hayrettin


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/75435</identifier>
  <creators>
    <creator>
      <creatorName>Uyanik, Elif</creatorName>
      <givenName>Elif</givenName>
      <familyName>Uyanik</familyName>
      <affiliation>Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Yurdakul, Murat Hayrettin</creatorName>
      <givenName>Murat Hayrettin</givenName>
      <familyName>Yurdakul</familyName>
      <affiliation>Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>A Note On Triangular Operators On Smooth Sequence Spaces</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/75435</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.7153/oam-2019-13-24</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">For a scalar sequence (theta(n))(n is an element of N), let C be the matrix defined by c(n)(k) = theta(n-k+1) if n &amp;gt;= k, c(n)(k) = 0 if n &amp;lt; k. The map between Kothe spaces lambda(A) and lambda(B) is called a Cauchy Product map if it is determined by the triangular matrix C. In this note we introduced some necessary and sufficient conditions for a Cauchy Product map on a nuclear Kothe space lambda(A) to nuclear G(1) - space lambda(B) to be linear and continuous. Its transpose is also considered.</description>
  </descriptions>
</resource>
25
6
görüntülenme
indirilme
Görüntülenme 25
İndirme 6
Veri hacmi 786 Bytes
Tekil görüntülenme 23
Tekil indirme 6

Alıntı yap