Dergi makalesi Açık Erişim
Uyanik, Elif; Yurdakul, Murat Hayrettin
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/75435</identifier>
<creators>
<creator>
<creatorName>Uyanik, Elif</creatorName>
<givenName>Elif</givenName>
<familyName>Uyanik</familyName>
<affiliation>Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey</affiliation>
</creator>
<creator>
<creatorName>Yurdakul, Murat Hayrettin</creatorName>
<givenName>Murat Hayrettin</givenName>
<familyName>Yurdakul</familyName>
<affiliation>Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>A Note On Triangular Operators On Smooth Sequence Spaces</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2019</publicationYear>
<dates>
<date dateType="Issued">2019-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/75435</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.7153/oam-2019-13-24</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">For a scalar sequence (theta(n))(n is an element of N), let C be the matrix defined by c(n)(k) = theta(n-k+1) if n &gt;= k, c(n)(k) = 0 if n &lt; k. The map between Kothe spaces lambda(A) and lambda(B) is called a Cauchy Product map if it is determined by the triangular matrix C. In this note we introduced some necessary and sufficient conditions for a Cauchy Product map on a nuclear Kothe space lambda(A) to nuclear G(1) - space lambda(B) to be linear and continuous. Its transpose is also considered.</description>
</descriptions>
</resource>
| Görüntülenme | 55 |
| İndirme | 8 |
| Veri hacmi | 1.0 kB |
| Tekil görüntülenme | 48 |
| Tekil indirme | 8 |