Dergi makalesi Açık Erişim

Rings in which every left zero-divisor is also a right zero-divisor and conversely

Ghashghaei, E.; Kosan, M. Tamer; Namdari, M.; Yildirim, T.


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Ghashghaei, E.</dc:creator>
  <dc:creator>Kosan, M. Tamer</dc:creator>
  <dc:creator>Namdari, M.</dc:creator>
  <dc:creator>Yildirim, T.</dc:creator>
  <dc:date>2019-01-01</dc:date>
  <dc:description>A ring R is called eversible if every left zero-divisor in R is also a right zero-divisor and conversely. This class of rings is a natural generalization of reversible rings. It is shown that every eversible ring is directly finite, and a von Neumann regular ring is directly finite if and only if it is eversible. We give several examples of some important classes of rings (such as local, abelian) that are not eversible. We prove that R is eversible if and only if its upper triangular matrix ring T-n(R) is eversible, and if M-n(R) is eversible then R is eversible.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/74763</dc:identifier>
  <dc:identifier>oai:zenodo.org:74763</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>JOURNAL OF ALGEBRA AND ITS APPLICATIONS 18(5)</dc:source>
  <dc:title>Rings in which every left zero-divisor is also a right zero-divisor and conversely</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
39
7
görüntülenme
indirilme
Görüntülenme 39
İndirme 7
Veri hacmi 1.4 kB
Tekil görüntülenme 33
Tekil indirme 7

Alıntı yap