Dergi makalesi Açık Erişim

Rings in which every left zero-divisor is also a right zero-divisor and conversely

Ghashghaei, E.; Kosan, M. Tamer; Namdari, M.; Yildirim, T.


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/74763</identifier>
  <creators>
    <creator>
      <creatorName>Ghashghaei, E.</creatorName>
      <givenName>E.</givenName>
      <familyName>Ghashghaei</familyName>
      <affiliation>Shahid Chamran Univ Ahvaz, Dept Math, Ahwaz, Iran</affiliation>
    </creator>
    <creator>
      <creatorName>Kosan, M. Tamer</creatorName>
      <givenName>M. Tamer</givenName>
      <familyName>Kosan</familyName>
      <affiliation>Gebze Tech Univ, Dept Math, TR-41400 Gebze, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Namdari, M.</creatorName>
      <givenName>M.</givenName>
      <familyName>Namdari</familyName>
      <affiliation>Shahid Chamran Univ Ahvaz, Dept Math, Ahwaz, Iran</affiliation>
    </creator>
    <creator>
      <creatorName>Yildirim, T.</creatorName>
      <givenName>T.</givenName>
      <familyName>Yildirim</familyName>
      <affiliation>Gebze Tech Univ, Dept Math, TR-41400 Gebze, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Rings In Which Every Left Zero-Divisor Is Also A Right Zero-Divisor And Conversely</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/74763</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1142/S0219498819500968</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">A ring R is called eversible if every left zero-divisor in R is also a right zero-divisor and conversely. This class of rings is a natural generalization of reversible rings. It is shown that every eversible ring is directly finite, and a von Neumann regular ring is directly finite if and only if it is eversible. We give several examples of some important classes of rings (such as local, abelian) that are not eversible. We prove that R is eversible if and only if its upper triangular matrix ring T-n(R) is eversible, and if M-n(R) is eversible then R is eversible.</description>
  </descriptions>
</resource>
39
7
görüntülenme
indirilme
Görüntülenme 39
İndirme 7
Veri hacmi 1.4 kB
Tekil görüntülenme 33
Tekil indirme 7

Alıntı yap