Dergi makalesi Açık Erişim
Kosan, M. Tamer; Lee, Tsiu-Kwen; Zhou, Yiqiang
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
<subfield code="o">oai:zenodo.org:66071</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">A right module M over a ring R is called feebly Baer if, whenever xa = 0 with x is an element of M and a is an element of R, there exists e(2) = e is an element of R such that xe = 0 and ea = a. The ring R is called feebly Baer if R-R is a feebly Baer module. These notions are motivated by the commutative analog discussed in a recent paper by Knox, Levy, McGovern, and Shapiro [6]. Basic properties of feebly Baer rings and modules are proved, and their connections with von Neumann regular rings are addressed.</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">article</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Kosan, M. Tamer</subfield>
<subfield code="u">Gebze Inst Technol, Dept Math, TR-41400 Gebze, Turkey</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:cb20beb25ecd0f0e7c73551f3f135d46</subfield>
<subfield code="s">114</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/66071/files/bib-7e2235af-f07e-4e6c-a153-5fe1981a8f84.txt</subfield>
</datafield>
<controlfield tag="005">20210316021646.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2014-01-01</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1080/00927872.2013.808651</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">FEEBLY BAER RINGS AND MODULES</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="4">
<subfield code="v">42</subfield>
<subfield code="p">COMMUNICATIONS IN ALGEBRA</subfield>
<subfield code="c">4281-4295</subfield>
<subfield code="n">10</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Lee, Tsiu-Kwen</subfield>
<subfield code="u">Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Zhou, Yiqiang</subfield>
<subfield code="u">Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada</subfield>
</datafield>
<controlfield tag="001">66071</controlfield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
</datafield>
</record>
| Görüntülenme | 65 |
| İndirme | 5 |
| Veri hacmi | 570 Bytes |
| Tekil görüntülenme | 60 |
| Tekil indirme | 5 |