Dergi makalesi Açık Erişim
Kosan, M. Tamer; Lee, Tsiu-Kwen; Zhou, Yiqiang
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/66071</identifier>
<creators>
<creator>
<creatorName>Kosan, M. Tamer</creatorName>
<givenName>M. Tamer</givenName>
<familyName>Kosan</familyName>
<affiliation>Gebze Inst Technol, Dept Math, TR-41400 Gebze, Turkey</affiliation>
</creator>
<creator>
<creatorName>Lee, Tsiu-Kwen</creatorName>
<givenName>Tsiu-Kwen</givenName>
<familyName>Lee</familyName>
<affiliation>Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan</affiliation>
</creator>
<creator>
<creatorName>Zhou, Yiqiang</creatorName>
<givenName>Yiqiang</givenName>
<familyName>Zhou</familyName>
<affiliation>Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada</affiliation>
</creator>
</creators>
<titles>
<title>Feebly Baer Rings And Modules</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2014</publicationYear>
<dates>
<date dateType="Issued">2014-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/66071</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1080/00927872.2013.808651</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">A right module M over a ring R is called feebly Baer if, whenever xa = 0 with x is an element of M and a is an element of R, there exists e(2) = e is an element of R such that xe = 0 and ea = a. The ring R is called feebly Baer if R-R is a feebly Baer module. These notions are motivated by the commutative analog discussed in a recent paper by Knox, Levy, McGovern, and Shapiro [6]. Basic properties of feebly Baer rings and modules are proved, and their connections with von Neumann regular rings are addressed.</description>
</descriptions>
</resource>
| Görüntülenme | 65 |
| İndirme | 5 |
| Veri hacmi | 570 Bytes |
| Tekil görüntülenme | 60 |
| Tekil indirme | 5 |