Dergi makalesi Açık Erişim

FEEBLY BAER RINGS AND MODULES

Kosan, M. Tamer; Lee, Tsiu-Kwen; Zhou, Yiqiang


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/66071</identifier>
  <creators>
    <creator>
      <creatorName>Kosan, M. Tamer</creatorName>
      <givenName>M. Tamer</givenName>
      <familyName>Kosan</familyName>
      <affiliation>Gebze Inst Technol, Dept Math, TR-41400 Gebze, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Lee, Tsiu-Kwen</creatorName>
      <givenName>Tsiu-Kwen</givenName>
      <familyName>Lee</familyName>
      <affiliation>Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan</affiliation>
    </creator>
    <creator>
      <creatorName>Zhou, Yiqiang</creatorName>
      <givenName>Yiqiang</givenName>
      <familyName>Zhou</familyName>
      <affiliation>Mem Univ Newfoundland, Dept Math &amp; Stat, St John, NF A1C 5S7, Canada</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Feebly Baer Rings And Modules</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2014</publicationYear>
  <dates>
    <date dateType="Issued">2014-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/66071</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1080/00927872.2013.808651</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">A right module M over a ring R is called feebly Baer if, whenever xa = 0 with x is an element of M and a is an element of R, there exists e(2) = e is an element of R such that xe = 0 and ea = a. The ring R is called feebly Baer if R-R is a feebly Baer module. These notions are motivated by the commutative analog discussed in a recent paper by Knox, Levy, McGovern, and Shapiro [6]. Basic properties of feebly Baer rings and modules are proved, and their connections with von Neumann regular rings are addressed.</description>
  </descriptions>
</resource>
65
5
görüntülenme
indirilme
Görüntülenme 65
İndirme 5
Veri hacmi 570 Bytes
Tekil görüntülenme 60
Tekil indirme 5

Alıntı yap