Dergi makalesi Açık Erişim
Mustafayev, Heybetkulu
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Mustafayev, Heybetkulu</dc:creator> <dc:date>2020-01-01</dc:date> <dc:description>Let G be a locally compact abelian group and let M(G) be the measure algebra of G. A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0) parallel to mu(n)parallel to(1) < infinity. Let T = {T-g : g is an element of G} be a bounded and continuous representation of G on a Banach space X. For any mu is an element of M(G), there is a bounded linear operator on X associated with mu, denoted by T-mu, which integrates T-g with respect to mu. In this paper, we study norm and almost everywhere behavior of the sequences {T-mu(n) x} (x is an element of X) in the case when mu, is power bounded. Some related problems are also discussed.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/5857</dc:identifier> <dc:identifier>oai:zenodo.org:5857</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>MATHEMATICA SCANDINAVICA 126(2) 339-366</dc:source> <dc:title>ON THE CONVERGENCE OF ITERATES OF CONVOLUTION OPERATORS IN BANACH SPACES</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
Görüntülenme | 53 |
İndirme | 9 |
Veri hacmi | 1.3 kB |
Tekil görüntülenme | 52 |
Tekil indirme | 9 |