Dergi makalesi Açık Erişim

ON THE CONVERGENCE OF ITERATES OF CONVOLUTION OPERATORS IN BANACH SPACES

Mustafayev, Heybetkulu


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/5857</identifier>
  <creators>
    <creator>
      <creatorName>Mustafayev, Heybetkulu</creatorName>
      <givenName>Heybetkulu</givenName>
      <familyName>Mustafayev</familyName>
      <affiliation>Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>On The Convergence Of Iterates Of Convolution Operators In Banach Spaces</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/5857</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.7146/math.scand.a-119601</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Let G be a locally compact abelian group and let M(G) be the measure algebra of G. A measure mu is an element of M(G) is said to be power bounded if sup(n &amp;gt;= 0) parallel to mu(n)parallel to(1) &amp;lt; infinity. Let T = {T-g : g is an element of G} be a bounded and continuous representation of G on a Banach space X. For any mu is an element of M(G), there is a bounded linear operator on X associated with mu, denoted by T-mu, which integrates T-g with respect to mu. In this paper, we study norm and almost everywhere behavior of the sequences {T-mu(n) x} (x is an element of X) in the case when mu, is power bounded. Some related problems are also discussed.</description>
  </descriptions>
</resource>
53
9
görüntülenme
indirilme
Görüntülenme 53
İndirme 9
Veri hacmi 1.3 kB
Tekil görüntülenme 52
Tekil indirme 9

Alıntı yap